Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Dựa vào đồ thị của hàm số y = f '(x), em suy ra được bảng biến thiên như sau:
Đáp án B.
Phương pháp : Ứng dụng tích phân để tính diện tích hình phẳng.
Cách giải:
Đáp án D
Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox
Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0
Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có
Đáp án C
Trên khoảng ( a, b )ta có: f ' (x)< 0 nên hàm số nghịch biến trên khoảng (a, b)
Ta có f (a) > f (b)
Tương tự trên khoảng ( b,c ) có f ' ( x ) > 0 nên hàm số đồng biến trên ( b,c )suy ra f (c) > f (b)
(Đến đây rõ ràng ra suy ra được 4 đúng và 1 trong 2 ý (1) và (2) có 1 ý đúng ta sẽ suy ra đáp án cần chọn là C)
Chặt chẽ hơn: Dựa vào đồ thị ta thấy
Do đó f (c) > f (a) > f (b)
Đáp án là D
Từ đồ thị f ’(x) ta lập được BBT của f(x)
=> Có 4 nghiệm là nhiều nhất
Đáp án C
Phương pháp:
+) đồng biến trên (a;b)
+) nghịch biến trên (a;b)
Cách giải:
Quan sát đồ thị của hàm số y = f’(x), ta thấy:
+) đồng biến trên (a;b) => f(a) > f(b)
+) nghịch biến trên (b;c) => f(b)<f(c)
Như vậy, f(a)>f(b), f(c)>f(b)
Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn