K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 10 2021

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

NV
25 tháng 10 2021

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

19 tháng 9 2018

11 tháng 11 2018

Ta có y= 3-x≥ 1 nên x≤ 2 do đó : x

Khi đó P= x3+ 2( 3-x) 2+ 3x2+4x( 3-x) -5x= x3+x2-5x+18

Xét hàm số f(x) = x3+x2-5x+18  trên đoạn [0 ; 2] ta có:

f ' ( x ) = 3 x 2 + 2 x - 5 ⇒ f ' ( x ) = 0 x ∈ ( 0 ; 2 ) ⇔

F(0) =18; f(1) = 15; f(2) =20

Vậy giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P  lần lượt bằng 20 và 15.

Chọn B.

20 tháng 1 2019

Đáp án A

12 tháng 9 2018

Đáp án : A

12 tháng 12 2017

Đáp án C.

23 tháng 2 2018

Đáp án C

10 tháng 5 2019

15 tháng 9 2017

Chọn C