Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
Gọi M 1 , M 2 , M lần lượt là điểm biểu diễn của các số phức z 1 , 2 z 2 , z trên mặt phẳng tọa độ Oxy.
Do z 1 - 3 - 4 i = 1 nên quỹ tích điểm M 1 là đường tròn C 1 có tâm I 1 3 ; 4 và bán kính R = 1
Do z 2 - 3 - 4 i = 1 2 ⇔ 2 z 2 - 6 - 8 i = 1 nên quỹ tích điểm M 2 là đường tròn C 2 có tâm I 2 6 ; 8 và bán kính R = 2
Ta có điểm M(a; b) thỏa mãn 3a - 2b = 12 nên quỹ tích điểm M là đường thẳng d: 3x - 2y - 12 = 0
Khi đó
Gọi C 3 là đường tròn đối xứng với đường tròn C 2 qua đường thẳng d.
Ta tìm được tâm của C 3 là I 3 138 13 ; 64 13 và bán kính R = 1
Khi đó
với M 3 ∈ C 3 và A, B lần lượt là giao điểm của đường thẳng I 1 I 3 với hai đường tròn C 1 , C 3 (quan sát hình vẽ).
Dấu "=" xảy ra khi và chỉ khi M 1 ≡ A và M 3 ≡ B
Vậy P m i n = A B + 2 = I 1 I 3 = 3 1105 13
Đặt và giả thiết trở thành
Suy ra
Phương trình có nghiệm khi
Chọn D.
Chọn đáp án B
Sử dụng bất đẳng thức Cauchy – Schwarz dạng phân thức ta có
Cách 2: Ghép cặp và dùng BĐT Cauchy. Cụ thể
Giả thiết trở thành
Ta đi tìm GTLN của
Sử dụng bất đẳng thức Cauchy – Schwarz dạng phân thức ta có
Suy ra
Chọn B.
Cách 2. Ghép cặp và dùng BĐT Cauchy. Cụ thể
Gọi M a ; b ; N c ; d
Khi đó ta có M thuộc đường tròn x - 1 2 + y - 2 2 = 1 C và N thuộc đường thẳng
Đường tròn (C) có tâm I 1 ; 2 , bán kính R = 1
Ta có
Khi đó
Chọn D.
Ta có
Ta có
Áp dụng bất đẳng thức Bunhiacopxky, ta có
Do đó
Dấu "x" xảy ra
Chọn C.
Ta thấy (1) là hình tròn tâm
Ta có Xem đây là phương trình đường thẳng.
Để đường thẳng và hình tròn có điểm chung
Đáp án C
Ta có: 9 a 3 + a b + 1 = 3 b + 2 ⇔ 9 a 3 + a = b + 1 3 b + 2
Đặt t = 3 b + 2 ⇒ b = t 2 - 2 3 ⇒ 9 a 3 + a = t 2 + 1 3 t ⇔ 27 a 3 + 3 a = t 3 + t ⇔ 3 a 3 + 3 a = t 3 + t
Xét hàm số f u = u 3 + u u ∈ ℝ ⇒ f ' u = 3 u 2 + 1 > 0 ∀ u ∈ ℝ ⇒ f u đồng biến trên ℝ
Khi đó: f 3 a = f t ⇔ t = 3 a ⇒ 3 b + 2 = 3 a ⇔ b = 9 a 2 - 2 3
Suy ra S = 6 a - 3 a 2 + 2 3 = - 3 a - 1 2 + 11 3 ≤ 11 3 .
Do đó giá trị lớn nhất của biểu thức S = 6a - b là 11 3 .