Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a+b=1\Rightarrow2\sqrt{ab}\le1\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)
Lại có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^2-ab+b^2=\left(a+b\right)^2-3ab\ge1-\frac{3}{4}=\frac{1}{4}\)
Dấu "=" xảy ra khi a = b = \(\frac{1}{2}\)
b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)
\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:
\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)
\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Ta có \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\) (1)
\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\)
\(\Leftrightarrow ab+a+b+1\ge9ab\) (vì ab > 0)
\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) (vì a + b = 1)
\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\) (vì a + b = 1)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (2)
Bất đẳng thức (2) đúng, mà các phép biến đổi trên tương đương, vậy bất đẳng thức (1) được chưng minh.
1+1/a= 1+ (a+b)/a = 2+b/a
tương tự: 1+1/b= 2+a/b
nhân 2 đa thức với nhau đc : 5+2a/b+2b/a=5+2(a/b+b/a)
áp dụng bđt cô si a/b+b/a >=2 =) 5+2(a/b+b/a)>=9 (dấu = xảy ra khi a-b=1/2)
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b+1\right).2ab+\frac{4}{a+b}=2\left(a+b+1\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)
\(\Rightarrow A\ge2\sqrt{ab}+2\sqrt{\left(a+b\right).\frac{4}{a+b}}+2\)
\(\Rightarrow A\ge2+4+2=8\)
"=" khi \(a=b=1\)
a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)
Mà \(a^3+b^3=a-b\)
\(\Rightarrow a^3-b^3< a-b\)
\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)
\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)
\(\Leftrightarrow a^2+ab+b^2< 1\)
\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)
b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
(a+b)(a2+ab+b2)+ab
=1(a2+2ab+b2-ab)+ab
=((a+b)2-ab)+ab
=1-ab+ab
=1
\(a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\)
\(=a^2+b^2+2ab-2ab\)
\(=\left(a+b\right)^2-2ab\)
\(=1-2ab\)
Ta có: \(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1^2\)
\(a^2+2ab+b^2=1\)
Áp dụng BĐT AM-GM ta có:
\(a^2+2ab+b^2\ge2ab+2.\sqrt{a^2b^2}=2ab+2ab=4ab\)
\(\Leftrightarrow1\ge4ab\)
\(\Leftrightarrow\frac{1}{4}\ge ab\)
\(\Rightarrow a^3+b^3+ab=1-2ab\ge1-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)
đpcm
P/S: Nếu bạn chưa học AM-GM thì chứng minh bài toán phụ
\(a^2+b^2\ge2ab\)rồi áp dụng nhé~
Có b=1-a. Thay vào được
\(a^3+\left(1-a\right)^3=a^3+1-3a+3a^2-a^3=3a^2-3a+\frac{3}{4}+\frac{1}{4}=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)