Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AMQ,\Delta ANP\) có :
\(AM=AN\) (A là trung điểm của MN)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
\(AQ=AP\) (A là trung điểm của QP)
=> \(\Delta AMQ=\Delta ANP\left(c.g.c\right)\) (*)
b) Từ (*) suy ra : \(\left\{{}\begin{matrix}\widehat{MQA}=\widehat{NPA}\\\widehat{QMA}=\widehat{PNA}\end{matrix}\right.\) (2 góc tương ứng)
Mà thấy : Mỗi cặp góc bằng nhau ở vị trí so le trong
=> \(MQ//PN\left(đpcm\right)\)
c) Ta có : \(MQ=PN\) [từ (*)]
Lại có : \(IM=IQ\) (I là trung điểm của MQ)
Suy ra : \(RP=RN\rightarrowđpcm\)
b: Xét tứ giác MPNQ có
O là trung điểm của MN
O là trung điểm của PQ
Do đó: MPNQ là hình bình hành
Suy ra MQ//PN
a) Xét \(\Delta MOQ\) và \(\Delta NOP\) có:
\(OM=ON\)(O là trung điểm MN)
\(\widehat{MOQ}=\widehat{NOP}\) (đối đỉnh)
\(OP=OQ\) (O là trung điểm PQ)
\(\Rightarrow\Delta MOQ=\Delta NOP\left(c.g.c\right)\)
b) Xét \(\Delta MDO\) và \(\Delta NEO\) có:
\(MD=NE\left(gt\right)\)
\(\widehat{DMO}=\widehat{ONE}\left(\Delta MOQ=\Delta NOP\right)\)
\(OM=ON\) (O là trung điểm MN)
\(\Rightarrow\Delta MDO=\Delta NEO\left(c.g.c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}OD=OE\\\widehat{DOM}=\widehat{EON}\end{matrix}\right.\)
Ta có: \(\widehat{DOM}=\widehat{EON}\left(cmt\right)\)
Mà \(\widehat{EON}+\widehat{MOE}=180^0\)(kề bù)
\(\Rightarrow\widehat{DOM}+\widehat{MOE}=180^0\Rightarrow\widehat{DOE}=180^0\)
\(\Rightarrow D,O,E\) thẳng hàng
Mà \(OD=OE\left(cmt\right)\)
=> O là trung điểm DE
bài này cx đề mak bạn chỉ cần đọc lại sách vở và vẽ hình thôi là lm dk
mình không vẽ hình được, sorry bạn nhé
ΔMPO và ΔQNO có
O1=O2 (đối đỉnh)
MO= OQ (gt)
PO= QN (gt)
⇒ ΔMOP= ΔQNO (c.g.c)
⇒ MP= QN (hai cạnh tương ứng)
ΔMQO vàΔPNO có
MO= OQ (gt)
PO= QN (gt)
O3= O4 (đối đỉnh)
⇒ΔMQO=ΔPNO(c.g.c)
⇒MQ=PN(2 cạnh tương ứng)
a: Xét tứ giác MPNQ có
E là trung điểm của MN
E là trung điểm của QP
Do đó: MPNQ là hình bình hành
Suy ra: MP=NQ
b: Ta có: MPNQ là hình bình hành
nên MQ=NP
c: Ta có: MPNQ là hình bình hành
nên MP//NQ
a: Xét ΔPAN có
PM vừa là đường cao, vừa là trung tuyến
=>ΔPAN cân tại P
b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔPAN có
NB,PM là trung tuyến
NB cắt PM tại G
=>G là trọng tâm
GP=2/3*3=2cm
c: CI là trung trực của MP
=>I là trung điểm của MP và CI vuông góc MP tại I
Xét ΔMPN có
I là trung điểm của PM
IC//MN
=>C là trung điểm của PN
=>PM,NB,AC đồng quy
Ta có hình vẽ sau:
a/ Xét ΔAMQ và ΔANP có:
AM = AN (gt)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
AQ = AP (gt)
=> ΔAMQ = ΔANP (c.g.c) (đpcm)
b/ Vì ΔAMQ = ANP (ý a)
=> \(\widehat{QMA}=\widehat{PNA}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> MQ // PN (đpcm)
c/+) Xét ΔAMI và ΔANR có:
\(\widehat{MAI}=\widehat{NAR}\) (đối đỉnh)
AM = AN(gt)
\(\widehat{AMI}=\widehat{RNA}\) (so le trong do MQ // PN (ý b))
=> ΔAMI = ΔANR (g.c.g)
=> MI = NR (1)
+) CM tương tự ta có:
ΔAQI = ΔAPR (g.c.g)
=> QI = PR (2)
Từ (1); (2) và I là trung điểm của MQ
=> RP = RN (đpcm)
giúp mình với!!!!!!!!!