Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta MOQ\) và \(\Delta NOP\) có:
\(OM=ON\)(O là trung điểm MN)
\(\widehat{MOQ}=\widehat{NOP}\) (đối đỉnh)
\(OP=OQ\) (O là trung điểm PQ)
\(\Rightarrow\Delta MOQ=\Delta NOP\left(c.g.c\right)\)
b) Xét \(\Delta MDO\) và \(\Delta NEO\) có:
\(MD=NE\left(gt\right)\)
\(\widehat{DMO}=\widehat{ONE}\left(\Delta MOQ=\Delta NOP\right)\)
\(OM=ON\) (O là trung điểm MN)
\(\Rightarrow\Delta MDO=\Delta NEO\left(c.g.c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}OD=OE\\\widehat{DOM}=\widehat{EON}\end{matrix}\right.\)
Ta có: \(\widehat{DOM}=\widehat{EON}\left(cmt\right)\)
Mà \(\widehat{EON}+\widehat{MOE}=180^0\)(kề bù)
\(\Rightarrow\widehat{DOM}+\widehat{MOE}=180^0\Rightarrow\widehat{DOE}=180^0\)
\(\Rightarrow D,O,E\) thẳng hàng
Mà \(OD=OE\left(cmt\right)\)
=> O là trung điểm DE
Ta có hình vẽ sau:
a/ Xét ΔAMQ và ΔANP có:
AM = AN (gt)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
AQ = AP (gt)
=> ΔAMQ = ΔANP (c.g.c) (đpcm)
b/ Vì ΔAMQ = ANP (ý a)
=> \(\widehat{QMA}=\widehat{PNA}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> MQ // PN (đpcm)
c/+) Xét ΔAMI và ΔANR có:
\(\widehat{MAI}=\widehat{NAR}\) (đối đỉnh)
AM = AN(gt)
\(\widehat{AMI}=\widehat{RNA}\) (so le trong do MQ // PN (ý b))
=> ΔAMI = ΔANR (g.c.g)
=> MI = NR (1)
+) CM tương tự ta có:
ΔAQI = ΔAPR (g.c.g)
=> QI = PR (2)
Từ (1); (2) và I là trung điểm của MQ
=> RP = RN (đpcm)
a) Xét \(\Delta AMQ,\Delta ANP\) có :
\(AM=AN\) (A là trung điểm của MN)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
\(AQ=AP\) (A là trung điểm của QP)
=> \(\Delta AMQ=\Delta ANP\left(c.g.c\right)\) (*)
b) Từ (*) suy ra : \(\left\{{}\begin{matrix}\widehat{MQA}=\widehat{NPA}\\\widehat{QMA}=\widehat{PNA}\end{matrix}\right.\) (2 góc tương ứng)
Mà thấy : Mỗi cặp góc bằng nhau ở vị trí so le trong
=> \(MQ//PN\left(đpcm\right)\)
c) Ta có : \(MQ=PN\) [từ (*)]
Lại có : \(IM=IQ\) (I là trung điểm của MQ)
Suy ra : \(RP=RN\rightarrowđpcm\)
mình không vẽ hình được, sorry bạn nhé
ΔMPO và ΔQNO có
O1=O2 (đối đỉnh)
MO= OQ (gt)
PO= QN (gt)
⇒ ΔMOP= ΔQNO (c.g.c)
⇒ MP= QN (hai cạnh tương ứng)
ΔMQO vàΔPNO có
MO= OQ (gt)
PO= QN (gt)
O3= O4 (đối đỉnh)
⇒ΔMQO=ΔPNO(c.g.c)
⇒MQ=PN(2 cạnh tương ứng)
a: Xét ΔHPQ vuông tại Q và ΔHPO vuông tại O có
HP chung
\(\widehat{QHP}=\widehat{OHP}\)
Do đó: ΔHPQ=ΔHPO
b: Xét ΔOPE vuông tại O và ΔQPK vuông tại Q có
PQ=PK
\(\widehat{KPQ}=\widehat{EPO}\)
Do đó: ΔOPE=ΔQPK
Suy ra: EO=KQ
Ta có: EO+OH=EH
KQ+QH=KH
mà EO=KQ
và OH=QH
nên EH=KH
Cm: a) Xét t/giác ABH và t/giác ACH
có AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
AH : chung
=> t/giác ABH = t/giác ACH (ch - cgn)
=> góc BAH = góc HAC (hai góc tương ứng) (Đpcm)
=> BH = CH (hai cạnh tương ứng)
=> H là trung điểm của BC
b) Xét t/giác AMH và t/giác ANH
có góc AMH = góc ANH = 900 (gt)
AH : chung
góc MAH = góc NAH (Cmt)
=> t/giác AMH = t/giác ANH (ch - gn)
=> AM = AN (hai cạnh tương ứng)
=> T/giác AMN là t/giác cân tại A
c) Gọi I là giao điểm của BC và MP
Ta có: T/giác AMH = t/giác ANH (Cmt)
=> MH = HN (hai cạnh tương ứng)
Mà HN = PH (gt)
=> MH = PH
Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)
góc AHN + góc NHC = 900 (phụ nhau)
Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)
=> góc MHB = góc NHC
Mà góc NHC = góc BHP
=> góc MHB = góc BHP
Xét t/giác MHI và t/giác PHI
có MH = PH (cmt)
góc MHI = góc IHP (cmt)
HI : chung
=> t/giác MHI = t/giác PHI (c.g.c)
=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)
=> góc MIH = góc HIP (hai góc tương ứng)
Mà góc MIH + góc HIP = 1800
=> 2.góc MIH = 1800
=> góc MIH = 1800 : 2
=> góc MIH = 900
=> HI \(\perp\)MP (2)
Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP
hay BC là đường trung trực của đoạc thẳng MP (Đpcm)
d) tự lm
Cm: a) Xét t/giác ABH và t/giác ACH
có AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
AH : chung
=> t/giác ABH = t/giác ACH (ch - cgn)
=> góc BAH = góc HAC (hai góc tương ứng) (Đpcm)
=> BH = CH (hai cạnh tương ứng)
=> H là trung điểm của BC
b) Xét t/giác AMH và t/giác ANH
có góc AMH = góc ANH = 900 (gt)
AH : chung
góc MAH = góc NAH (Cmt)
=> t/giác AMH = t/giác ANH (ch - gn)
=> AM = AN (hai cạnh tương ứng)
=> T/giác AMN là t/giác cân tại A
c) Gọi I là giao điểm của BC và MP
Ta có: T/giác AMH = t/giác ANH (Cmt)
=> MH = HN (hai cạnh tương ứng)
Mà HN = PH (gt)
=> MH = PH
Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)
góc AHN + góc NHC = 900 (phụ nhau)
Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)
=> góc MHB = góc NHC
Mà góc NHC = góc BHP
=> góc MHB = góc BHP
Xét t/giác MHI và t/giác PHI
có MH = PH (cmt)
góc MHI = góc IHP (cmt)
HI : chung
=> t/giác MHI = t/giác PHI (c.g.c)
=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)
=> góc MIH = góc HIP (hai góc tương ứng)
Mà góc MIH + góc HIP = 1800
=> 2.góc MIH = 1800
=> góc MIH = 1800 : 2
=> góc MIH = 900
=> HI ⊥MP (2)
Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP
hay BC là đường trung trực của đoạc thẳng MP (Đpcm)
b: Xét tứ giác MPNQ có
O là trung điểm của MN
O là trung điểm của PQ
Do đó: MPNQ là hình bình hành
Suy ra MQ//PN