Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Trên cùng một nửa mặt phẳng bờ chứa tia Oa, ta có: \(\widehat{aOb}< \widehat{aOc}\)
nên tia Ob nằm giữa hai tia Oa và Oc
Suy ra: \(\widehat{aOb}+\widehat{bOc}=\widehat{aOc}\)
hay \(\widehat{bOc}=70^0\)
Theo bài ra ta có hình vẽ:
a, Vì OB nằm giữa OA và OC \(\Rightarrow\widehat{AOB}+\widehat{BOC}=\widehat{AOC}\Rightarrow45^o+\widehat{BOC}=120^o\)
\(\Rightarrow\widehat{BOC}=120^o-45^o=75^o\)
b, Vì OD là tia đối tia OC \(\Rightarrow\widehat{COD}=180^o\)
Vì OA nằm giữa OC và OD \(\Rightarrow\widehat{AOC}+\widehat{AOD}=\widehat{COD}\Rightarrow120^o+\widehat{AOD}=180^o\)
\(\Rightarrow\widehat{AOD}=180^o-120^o=60^o\)
c, Vì OK là tia phân giác của \(\widehat{AOD}\Rightarrow\widehat{AOK}=\widehat{DOK}=\frac{\widehat{AOD}}{2}\)
\(\Rightarrow\widehat{AOK}=\widehat{DOK}=\frac{60^o}{2}=30^o\)
Vì OA nằm giữa OB và OK \(\Rightarrow\widehat{AOB}+\widehat{AOK}=\widehat{BOK}\Rightarrow45^o+30^o=\widehat{BOK}\)
\(\Rightarrow\widehat{BOK}=75^o\)
Vì OB nằm giữa OK và OC và \(\widehat{BOK}=\widehat{BOC}\) => OB là tia phân giác của \(\widehat{COK}\)
BÀI GIẢI
trên cùng nửa mặt phẳng bờ chứa tia OA,AOB<AOC
=> Tia OB là tia nằm giữa
Vì OB là tia nằm giữa nên ta có:
AOB + BOC = AOC
Thay AOB=45 độ; AOC=120 độ,ta có:
45 độ +BOC= 120 độ
BOC=75 độ
Bài 1:
a)
Theo đề ra: Góc AOB = 48 độ
Góc AOC = 96 độ
=> Góc AOB < góc AOC => Tia OB nằm giữa hai tia OC và OA
Ta có: AOB + BOC = AOC
48 độ + BOC = 96 độ
BOC = 48 độ
b)
Ta có:
+) Tia OB nằm giữa hai tia OA và OC
+) Góc AOB = góc BOC = 48 độ
=> Tia OB là tia phân giác của góc AOC
Bài 2:
a)
Theo đề ra: Góc AOB = 124 độ
Góc AOC = 48 độ
=> Góc AOB > góc AOC => Tia OC nằm giữa hai tia OA và OB
Ta có: AOC + BOC = AOB
48 độ + BOC = 124 độ
BOC = 76 độ
b)
Theo đề ra: Tia OD là tia đối của tia OB => Góc BOD = 180 độ
Ta có: BOA + AOD = BOD
124 độ + AOD = 180 độ
AOD = 56 độ
Ta có: BOC + COD = BOD
76 độ + COD = 180 độ
COD = 104 độ
a) Ta có A O B ^ < A O C ^ nên tia OB nằm giữa hai tia OA và OC. Theo tính chất cộng góc, suy ra 20°, nên A O B ^ = B O C ^ . Vậy OB là tia phân giác của góc AOC.
b) Tương tự ý a), tính được
C O D ^ = 20° và B O D ^ = 40°.
c) Ta có B O C ^ = C O D ^ = B O D ^ 2 (cùng bằng 20°). Do đó, tia OC là tia phân giác của góc BOD.
a) Ta có : aOb < aOc ( \(40^o< 140^o\))
⇒ Ob nằm giữa Oa và Oc
⇒ aOb + bOc = aOc
⇒ bOc = aOc - aOb = \(140^o-40^o=100^o\)
b) Có : Od là tia đối của Oc ⇒ Ob nằm giữa Oc và Od
⇒ dOb + bOc = \(180^o\) ( 2 góc kề bù )
⇒ dOb = \(180^o\) - bOc = \(180^o-100^o=80^o\)
Lại có : bOd > bOa ( \(80^o>40^o\))
⇒ Oa nằm giữa Ob và Od
⇒ dOa + aOb = dOb
⇒ dOa = dOb - aOb = \(80^o-40^o=40^o\)
mà aOb = \(40^o\)(gt)
⇒ Tia Oa là tia phân giác của bOd
Giải:
a) Vì +)Ob;Oc cùng ∈ 1 nửa mặt phẳng bờ chứa tia Oa
+)\(a\widehat{O}b< a\widehat{O}c\) (40o<140o)
⇒Ob nằm giữa Oa và Oc
⇒\(a\widehat{O}b+b\widehat{O}c=a\widehat{O}c\)
\(40^o+b\widehat{O}c=140^o\)
\(b\widehat{O}c=140^o-40^o\)
\(b\widehat{O}c=100^o\)
b) Vì Od là tia đối của Oc
⇒\(c\widehat{O}d=180^o\)
⇒\(d\widehat{O}b+b\widehat{O}c=180^o\)
\(d\widehat{O}b+100^o=180^o\)
\(d\widehat{O}b=180^o-100^o\)
\(d\widehat{O}b=80^o\)
⇒\(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\)
\(40^o+a\widehat{O}d=80^o\)
\(a\widehat{O}b=80^o-40^o\)
\(a\widehat{O}b=40^o\)
Vì +) \(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\)
+) \(b\widehat{O}a=a\widehat{O}d=40^o\)
⇒Oa là tia p/g của \(b\widehat{O}d\)
Chúc bạn học tốt!
a) Số đo góc BOC là:
\(50^o-30^o=20^o\)
b) Số đo góc BOD là:
\(20^o.2=40^o\)
Số đo góc AOE là:
\(50^o.2=100^o\)