Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{y}{x}+\frac{x}{z}+\frac{z}{y}\)
\(\Leftrightarrow\frac{zx^2+xy^2+yz^2}{xyz}=\frac{y^2z+x^2y+z^2x}{xyz}\)
\(\Rightarrow zx^2+xy^2+yz^2=y^2z+x^2y+z^2x\)
\(\Leftrightarrow zx^2+xy^2+yz^2-y^2z-x^2y-z^2x=0\)
\(\Leftrightarrow\left(zx^2-z^2x\right)+\left(xy^2-y^2z\right)-\left(x^2y-yz^2\right)=0\)
\(\Leftrightarrow zx\left(x-z\right)+y^2\left(x-z\right)-y\left(x-z\right)\left(x+z\right)=0\)
\(\Leftrightarrow\left(x-z\right)\left(zx+y^2-xy-yz\right)=0\)
\(\Leftrightarrow\left(x-z\right)\left[z\left(x-y\right)-y\left(x-y\right)\right]=0\)
\(\Leftrightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)
=> x - y = 0 hoặc y - z = 0 hoặc z - x = 0
=> x = y hoặc y = z hoặc z = x
Vậy luôn tồn tại 2 số trong 3 số x,y,z bằng nhau
=> đpcm
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-x-y}{\left(x+y+z\right)z}\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}\right)=0\)
\(+,x+y=0\Rightarrow x=-y\Rightarrow\text{đpcm}\)
\(+,\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}=0\Leftrightarrow\frac{xy+xz+yz+z^2}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{x\left(y+z\right)+z\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\frac{\left(y+z\right)^2}{xyz\left(x+y+z\right)}=0\Rightarrow y+z=0\Rightarrow z=-y\Rightarrow\text{đpcm}\)
\(\text{Vậy ta có điều phải chứng minh }\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) (do x+y+z = 2015)
\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
đến đây tự lm nốt nha
Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Rightarrow\) \(\frac{yz+xz+xy}{xyz}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\) \(yz\left(x+y+z\right)+xz\left(x+y+z\right)+xy\left(x+y+z\right)=xyz\)
\(\Leftrightarrow\) \(xyz+y^2z+yz^2+x^2z+xyz+xz^2+x^2y+xy^2+xyz-xyz=0\)
\(\Leftrightarrow\) \(2xyz+y^2z+yz^2+x^2z+xz^2+x^2y+xy^2=0\)
\(\Leftrightarrow\) \(x^2\left(y+z\right)+x\left(y^2+2yz+z^2\right)+yz\left(y+z\right)=0\)
\(\Leftrightarrow\) \(\left(y+z\right)\left(x^2+xy+xz+yz\right)=0\)
\(\Leftrightarrow\) \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\) \(x=-y\) hoặc \(y=-z\) hoặc \(z=-x\)
Vậy, trong ba số x, y, z có hai số đối nhau
2.
Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
1:
Áp dụng bất đẳng thức Cô si:
\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)
\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)
\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)
\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)
\(=1\left[1+\frac{1}{4}\right]\)
\(=1+\frac{5}{4}=\frac{9}{4}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)