Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=f(0)+(f(1/101)+f(100/101))+(f(2/101)+f(99/101))+...+f(1)
A=f(0)+50f(1)+f(1)
A=f(0)+51f(1)
A=4^0/4^0+2+51(4^1/4^1+2)
A=1/3+34
A=103/3
Mik ko bik đúng ko nữa
`f(x)=1+x^3+x^5+.....+x^101`
`=1+(-1-1-.....-1)`
`=1+50.(-1)`
`=-49`
- Với f(x)=1
=>f(1)=1+13+15+...+1101
=1+1+...+1
=1+1*50 (tính theo số mũ)
=51
- Với f(x)=-1
=>f(-1)=1+(-1)3+...+(-1)101
=1+(-1)+(-1)+...+(-1)
=1+(-1)*50
=-49
Ta có f(x)=1+x^3+x^5+x^7+....+x^101 (1)
Thay x=1 vào (1) ta đc
f(1)=1+1^3+1^5+...+1^101
=1+1+1+...1+1
=51(có 51 số 1)
Vậy f(1)=51
Thay x=-1 vào (1) ta đc
f(-1)=1+(-1)^3+(-1)^5+(-1)^7+...+(-1)^101
=1+(-1)+(-1)+(-1)+...+(-1)
=1+(-50) ( có 50 số -1)
=-49
Vậy f(-1)=-49
Ta có: f(1) = 1 + 1^3 + 1^5 + 1^7 +...+ 1^101
= 1 + 50.1
= 1 + 50
= 51
Vậy f(1) = 51
Có: f(-1) = 1 + (-1)^3 + (-1)^5 + (-1)^7 + ... + (-1)^101
= 1 + 50.(-1)
= 1 - 50
= -49
Vậy f(-1) = -49
Chúc bạn học tốt nha
*) f(1) = 1^100 + 1^99 + ...+ 1 + 1
= 1+ 1 + 1 + ...+ 1 + 1 (101 số 1)
= 101
tương tự:
*) f(-1) = -1 - 1 - 1 ... - 1 - 1 + 1 (100 chữ số 1)
= -100 + 1 = -99
*) đặt f(2) = 2^100 + 2^99 + ...+ 2^2 + 2 + 1 = A
=> 2A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2
=> 2A - A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2 - ( 2^100 + 2^99 + ...+ 2^2 + 2 + 1)
<=> A = 2^101 - 1
=> f(2) = 2^101 - 1
tương tự:
*) đặt f(-2) = -2^100 - 2^99 ...- 2^2 - 2 - 1 = B
=> 2B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2
=> 2B -B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2 - ( -2^100 - 2^99 ...- 2^2 - 2 - 1)
<=> B = -2^101 + 1
=> f(-2) = -2^101 + 1
g(1) = 1 + 1^3 + 1^5 + ... + 1^101 (51 số 1)
= 51
g(-1) = -1 - 1^3 - 1^5.... - 1^101 (51 số 1)
= -51
đặt g(3) = 3 + 3^3 + 3^5 + ...+ 3^101 = A
=> 3^2 * A = 3^3 + 3^5 + ....+ 3^103
=> 9A - A = 3^3 + 3^5 + ....+ 3^103 - (3 + 3^3 + 3^5 + ...+ 3^101)
=> 8A = -3 + 3^103
=> A = \(\dfrac{3^{103}-3}{8}\)
=> g(3) = \(\dfrac{3^{103}-3}{8}\)
f(1) = 1^1 + 1^3 + 1^5 + 1^7 +... +1^101
= 1+1+1+...+1
Bieu thuc tren co so so hang la : (101-1):2+1=51 so
f(1)=1.51=51
f(-1) = 1 + (-1)^3+(-1)^5+(-1)^7+...+(-1)^101
= 1 + (-1)+(-1)+(-1)+...+(-1)
Trong biểu thuc tren tu (-1)^3 den (-1)^101 co so so hang la : (101-3):2+1=47
f(-1)=1+(-1).47=1+(-1)=0
Tính \(f\left(1\right)\)
\(f\left(x\right)=1+x^3+x^5+x^7+...+x^{101}\)
\(\Rightarrow f\left(1\right)=1+1^3+1^5+1^7+...+1^{101}\)
\(=1+1+1+1+...+1\) (có \(51\) số \(1\))
\(=51\)
Tính \(f\left(-1\right)\)
\(f\left(x\right)=1+x^3+x^5+x^7+...+x^{101}\)
\(\Rightarrow f\left(-1\right)=1+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{101}\)
\(=1+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\) (có \(50\) số \(-1\))
\(=1+\left(-50\right)\)
\(=-49\)
Vậy: \(\left\{{}\begin{matrix}f\left(1\right)=51\\f\left(-1\right)=-49\end{matrix}\right.\)
Ta có:
a) \(f\left(1\right)=1+1^3+1^5+1^7+...+1^{101}\)
\(f\left(1\right)=1+50=51\)
b) \(f\left(-1\right)=1+\left(-1\right)^3+\left(-1\right)^5+\left(-1\right)^7+...+\left(-1\right)^{101}\)
\(f\left(-1\right)=1-50=-49\)
Thay x = 1 vào f(x) ta được
f ( 1 ) = 1 + 1 3 + 1 5 + 1 7 + … + 1 101 = 1 + 1 + 1 + … + 1 ⏟ 51501 = 51.1 = 51
Thay x = -1 vào f(x) ta được
f ( − 1 ) = 1 + ( − 1 ) 3 + ( − 1 ) 5 + ( − 1 ) 7 + … + ( − 1 ) 101 = 1 + ( − 1 ) + ( − 1 ) + … + ( − 1 ) ⏟ 50 : 0 ( − 1 ) = 1 + 50. ( − 1 ) = 1 − 50 = − 49 Vây f ( 1 ) = 51 ; f ( − 1 ) = − 49
Chọn đáp án B