Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(x)=1+x^3+x^5+x^7+....+x^101 (1)
Thay x=1 vào (1) ta đc
f(1)=1+1^3+1^5+...+1^101
=1+1+1+...1+1
=51(có 51 số 1)
Vậy f(1)=51
Thay x=-1 vào (1) ta đc
f(-1)=1+(-1)^3+(-1)^5+(-1)^7+...+(-1)^101
=1+(-1)+(-1)+(-1)+...+(-1)
=1+(-50) ( có 50 số -1)
=-49
Vậy f(-1)=-49
`f(x)=1+x^3+x^5+.....+x^101`
`=1+(-1-1-.....-1)`
`=1+50.(-1)`
`=-49`
Ta có:\(f\left(x\right)=x^8-100x^7-x^7+100x^6-....+x^2-100x-x+100-75\)
\(=x^7\left(x-100\right)-x^6\left(x-100\right)-....+x\left(x-100\right)-\left(x-100\right)-75\)
Nên \(f\left(100\right)=x^7.\left(100-100\right)-x^6\left(100-100\right)-....+x\left(100-100\right)-\left(100-100\right)-75\)
\(=-75\)
Với x= 100 thì 101=x+1 nên ta có f(100)=x\(^8\)-(x+1)x\(^7\)=(x+1)x\(^6\)-(x+1)x\(^5\)+....-(x+1)+25=x\(^8\)-x\(^8\)+x\(^7\)-......-x-1+25=24
- Với f(x)=1
=>f(1)=1+13+15+...+1101
=1+1+...+1
=1+1*50 (tính theo số mũ)
=51
- Với f(x)=-1
=>f(-1)=1+(-1)3+...+(-1)101
=1+(-1)+(-1)+...+(-1)
=1+(-1)*50
=-49
A=f(0)+(f(1/101)+f(100/101))+(f(2/101)+f(99/101))+...+f(1)
A=f(0)+50f(1)+f(1)
A=f(0)+51f(1)
A=4^0/4^0+2+51(4^1/4^1+2)
A=1/3+34
A=103/3
Mik ko bik đúng ko nữa
Cam on ban rat nhiu