Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có :MP,MQ là tiếp tuyến của (O)
\(\Rightarrow MP\perp OP,MQ\perp OQ\)
Mà \(OH\perp MH\Rightarrow M,H,O,P\) cùng thuộc đường tròn đường kính MO
b.Ta có : M,H,Q,O,P cùng thuộc một đường tròn
\(\Rightarrow\widehat{IHQ}=\widehat{IPQ}\)
Mà \(\widehat{HIQ}=\widehat{PIO}\Rightarrow\Delta IPO~\Delta IHQ\left(g.g\right)\)
\(\Rightarrow\frac{IO}{IQ}=\frac{IP}{IH}\Rightarrow IH.IO=IQ.IP\)
c.Ta có :
\(MP,MQ\) là tiếp tuyến của (O)
\(\Rightarrow PQ\perp MO\Rightarrow\widehat{OKI}=\widehat{OHM}\left(=90^0\right)\)
\(\Rightarrow\Delta OKI~\Delta OHM\left(g.g\right)\)
\(\Rightarrow\frac{OK}{OH}=\frac{OI}{OM}\Rightarrow OM.OK=OI.OH\)
Mà \(PK\perp OM,OP\perp MP\Rightarrow OK.OM=OP^2=R^2\)
\(\Rightarrow OI.OH=R^2\Rightarrow OI=\frac{R^2}{OH}\)
Vì \(OH\perp d\) cố định \(\Rightarrow H\)cố định \(\Rightarrow I\) cố định
\(\Rightarrow IP.IQ=IO.IH\) không đổi
d ) Ta có :
\(\widehat{PMQ}=60^0\Rightarrow\widehat{KOQ}=\widehat{KOP}=60^0\)
Mà \(OK=\frac{1}{2}OQ=\frac{1}{2}R\)Lại có : \(\widehat{MOQ}=60^0,OQ\perp MQ\Rightarrow\Delta MQO\)là nửa tam giác đều\(\Rightarrow MO=2OQ=2R\Rightarrow MK=OM-OK=\frac{3}{2}R\)\(\Rightarrow\frac{S_{MPQ}}{S_{OPQ}}=\frac{\frac{1}{2}MK.PQ}{\frac{1}{2}OK.PQ}=\frac{MK}{OK}=\frac{3}{4}\)Lười quá, chắc mình giải câu c thôi ha.
Vẽ \(OH\) vuông góc \(d\) tại \(H\). \(AB\) cắt \(OH\) tại \(L\). \(OM\) cắt \(AB\) tại \(T\)
.
CM được \(OL.OH=OT.OM=R^2\) nên \(L\) cố định. Vậy \(AB\) luôn qua \(L\) cố định.
a) Ta thấy OM là trung trực của PQ => OM vuông góc PQ => ^OKI = ^OHM = 900
=> \(\Delta\)OKI ~ \(\Delta\)OHM (g.g) => OH.OI = OK.OM (đpcm).
b) Áp dụng hệ thức lượng trong tam giác vuông có: OH.OI = OK.OM = OP2 = R2
Vì d,O đều cố định nên khoẳng cách từ O tới d không đổi hay OH không đổi
Vậy \(OI=\frac{R^2}{OH}=const\). Mà tia OI cố định nên I cố định (đpcm).
a, Theo tính chất của hai tiếp tuyến cắt nhau chứng minh được OM là đường trung trực của AB, tức OM vuông góc AB. Áp đụng hệ thức lượng trong tam giác vuông OAM chứng minh được : OI. OM = O A 2 = R 2
b, Chứng minh được: ∆OKI:∆OMH(g.g) => OK.OH = OI.OM
c, Để OAEB là hình thoi thì OA = EB. Khi đó, tam giác OAK đều, tức là
A
O
M
^
=
60
0
. Sử dụng tỉ số lượng giác của góc
A
O
M
^
, tính được OM=2OA=2R, tức là M cách O một khoảng 2R
d, Kết hợp ý a) và b) => OK.OH =
R
2
=> OK =
R
2
O
H
Mà độ dài OH không đổi nên độ dài OK không đổi
Do đó, điểm K là điểm cố định mà AB luôn đi qua khi M thay đổi
a) Tứ giác MPOQ có góc MPO = góc MQO = 900 => MPOQ nội tiếp => góc PMO = góc PQO (1)
Tứ giác MPOH có MPO = góc MHO = 900 => MPOH nội tiếp => góc PMO = góc PHỐ (2)
Từ (1) và (2) => góc PQO = góc PHO => OPHQ nội tiếp
b) Tam giác IOQ và tam giác IPH có góc OIQ = góc PIH (đđ); góc Q = góc H nên chúng đồng dạng
=> IO/IP = IQ/IH => đpcm
c) Ta có OM là đường trung trực của PQ (vì OP =OQ ; MP = MQ) => OM vuông góc PQ tại K
Tam giác vuông OKI và tam giác vuông OHM có góc O chung nên đồng dạng => OK/OH = OI/OM
=> OK.OM = OI.OH (3)
Ta lại có tam giác OPM vuông tại P có PK là đường cao => OK.OM = OP2 (4)
Từ (3) và (4) => OI.OH = OP2. Mà OP, OH không đổi, nên OI không đổi . vậy I là điểm cố định
từ cmt IP.IQ = IO.IH suy ra IP.IQ không đổi