K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

M P Q O H I K

a) Ta thấy OM là trung trực của PQ => OM vuông góc PQ => ^OKI = ^OHM = 900

=> \(\Delta\)OKI ~ \(\Delta\)OHM (g.g) => OH.OI = OK.OM (đpcm).

b) Áp dụng hệ thức lượng trong tam giác vuông có: OH.OI = OK.OM = OP2 = R2

Vì d,O đều cố định nên khoẳng cách từ O tới d không đổi hay OH không đổi

Vậy \(OI=\frac{R^2}{OH}=const\). Mà tia OI cố định nên I cố định (đpcm).

15 tháng 9 2021

a/ Ta có \(OM\perp PQ\) (Hai tt cùng xuất phát từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi đường nối 2 tiếp điểm)

Xét tg vuông OIK và tg vuông OMH có \(\widehat{HOM}\) chung => tg OIK đồng dạng tg OMH

\(\Rightarrow\frac{OI}{OM}=\frac{OK}{OH}\Rightarrow OH.OI=OM.OK\)

Xét tg vuông QMO 

\(OQ^2=R^2=OK.OM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow OH.OI=OM.OK=R^2\left(dpcm\right)\)

b/ Ta có

\(OH.OI=R^2\Rightarrow OI=\frac{R^2}{OH}\)

Ta có d cố định, O cố định => OH cố định và không đổi

\(R^2\)không đổi 

=> OI không đổi

=> I nằm trên đường thẳng OH cố định và cách O cố định 1 khoảng OI không đổi => I cố định

c/ Không hiểu đề bài

16 tháng 8 2019

O M A B d H I K

a) MA và MB là hai tiếp tuyến từ M đến (O) nên MA = MB => OM là trung trực của AB

=> OM vuông góc AB (tại K) => ^OKI = ^OHM = 900 => \(\Delta\)OKI ~ \(\Delta\)OHM (g.g)

Vậy OI.OH = OK.OM (đpcm).

b) Áp dụng hệ thức lượng trong tam giác vuông có: OI.OH = OK.OM = OA2 = R2 (Không đổi)

Vì d cố định, O cố định nên khoảng cách từ O tới d không đổi hay OH không đổi

Do vậy \(OI=\frac{R^2}{OH}=const\)=> Đường tròn (OI) cố định

Mà K thuộc (OI) (vì ^OKI nhìn đoạn IO dưới góc 900) nên K di chuyển trên (OI) cố định (đpcm).

19 tháng 8 2019

const là gì mình chưa biết ban giải thích cái đó được không?