K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

A C E x O B D F y

+ Vì \(Ax//By\left(gt\right)\)

\(\Rightarrow\widehat{BAx}=\widehat{ABy}\)( vì 2 góc so le trong ) (1)
Hay \(\widehat{OAC}=\widehat{OBD}\)

Xét \(\Delta OAC\)và \(\Delta OBD\)có :
\(OA=OB\) ( vì O là trung điểm của AB )
\(\widehat{OAC}=\widehat{OBD}\left(cmt\right)\)

\(AC=BD\left(gt\right)\)

Suy ra \(\Delta OAC=\Delta OBD\left(c.g.c\right)\)

\(\Rightarrow OC=OD\)( 2 cạnh tương ứng )

+ ) Từ (1) \(\Rightarrow\widehat{OAE}=\widehat{OBF}\)

Xét \(\Delta OAE\)và \(\Delta OBF\)có :

\(OA=OB\)( vi O là trung điểm của AB )

\(\widehat{OAE}=\widehat{OBF}\left(cmt\right)\)

\(AE=BF\left(gt\right)\)

Suy ra :\(\Delta OAE=\Delta OBF\left(c.g.c\right)\)

\(\Rightarrow OE=OF\)( 2 cạnh tương ứng )

Xét \(\Delta OED\)và \(\Delta OFC\)có :
\(OE=OF\left(cmt\right)\)

\(\widehat{EOD}=\widehat{FOC}\)( vì 2 góc đối đỉnh )
\(OD=OC\left(cmt\right)\)

Suy ra \(\Delta OED=\Delta OFC\left(c.g.c\right)\)

\(\Rightarrow ED=CF\)( 2 cạnh tương ứng ) (đpcm)

Chúc bạn học tốt !!!

30 tháng 1 2020

vào link dưới đây:

https://olm.vn/hoi-dap/detail/63073899634.html

21 tháng 11 2016

(để chứng minh OC =OD ta xét tam giác)

Xét tam giác OCA và tam giác ODB

AC=BD(gt)

góc CAO bằng góc DOB ( gt vì Góc BAx=ABy)

AO=BO ( O là trung điểm của AB)

Vậy tam giác OCA= tam giác ODB (c.g.c)

=> OC= OD ( 2 cạnh tương ứng)

Chứng MInh tương tự => OE=OF

b)để cm C,O,D thẳng hàng theo kiến thức lớp 7 nên CM 3 điểm tạo thành 1 góc bằng 180 độ. CM góc COD bằng 180 độ

Ta có ^COA+^COB= 180 độ

         DOB + COB = COD

          Mà ^COA = ^DOB ( 2 góc tương ứng của tam giác vừa CM ở í a)

=> DOB +COB bằng 180 độ

=>COD bằng 180 

Vậy C, O, D thẳng hàng

CMTT( chứng minh tương tự )=> E, O,F thằng hàng

c)cái này cũng xét tam giác mà, chả khó j đâu

            Cho mình xin cái :)

23 tháng 8 2017

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)