Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thứ nhất phải nói, công cụ vẽ hình quá sơ sài :)
a/ cm C, O , D thẳng hàng.
Xét tam giác AOC và tam giác BOD ta có:
AO = OB(O là trung điểm của AB) (1)
AC = BD (gt) (2)
góc CAO = góc DBO (2 góc so le trong , Ax//By) (3)
Từ (1),(2),(3) => tam giác AOC và tam giác BOD (c-g-c)
=> góc AOC = góc BOD (2 góc tương ứng).
Ta có :
góc AOC + góc COD = 1800 (2 góc kề bù) (1)
góc AOC = góc BOD (cmt) (2)
Từ (1),(2) => góc BOD + góc COD = 1800
=> góc COD = 1800
=> C, O , D thẳng hàng.
C/m E,O,F thẳng hàng.
bạn tự chứng minh theo cách trên.
b/ cm DE = CF và DE// CF
Ta có :
AE = BF (gt) (1)
AC = BD (gt) (2)
Từ (1),(2)=> AE - AC = BF - BD
=> CE = DF
Xét tam giác DEC và tam giác CFD ta có:
CD = CD (cạnh chung) (1)
CE = FD (cmt) (2)
góc ECD = góc FDC (2 góc so le trong, Ax//By) (3)
Từ (1),(2),(3) => tam giác DEC = tam giác CFD (c-g-c)
=> DE = CF (2 cạnh tương ứng)
Ta có :
góc CDE = góc DCF ( tam giác DEC = tam giác CFD)
mà góc CDE và góc DCF nằm ở vị trí so le trong
nên DE //CF
Vì Ax//By;C,E thuộc Ax;D,F thuộc By=>Ac//BD, AE//BF
=>góc CAO=góc OBD
Góc AEO=góc OFD
Góc ACO= góc ODB
xét tam giác ACO và tam giác OBD ta có
OA=OB;Góc CAO=BOD;ACO=ODB
=>hai tam giác này bằng nhau
=>góc COA=BOD(2 góc tương ứng )
Mà A,O,B thửng hàng=>góc COB+COA=180 độ
=>góc BOD+COB=180 độ
=>O,C,D thẳng hàng
tương tự chứng minh với E,O,F
b,Từ những tam giác bằng nhau ta có được OE=OF;CO=OD
xét tam giác OED và OCF có OE=OF; CO=OD; góc COF=EOD( 2 góc đối đỉnh)
=>góc FOD=CDE; DE=CF(2 cạnh tương ứng)
mà hai góc này ở vị trí so le trong của hai đoạn thẳng DE và CF được cắt bởi đoạn DC
=>DE//CF
má ơi trình bày trên máy tính khó qua cơ. gấp 3 lần thời gian trình bày ở vở luôn
ý:(((
(
trả lời:\
Vì Ax//By;C,E thuộc Ax;D,F thuộc By=>Ac//BD, AE//BF
=>góc CAO=góc OBD
Góc AEO=góc OFD
Góc ACO= góc ODB
xét tam giác ACO và tam giác OBD ta có
OA=OB;Góc CAO=BOD;ACO=ODB
=>hai tam giác này bằng nhau
=>góc COA=BOD(2 góc tương ứng )
Mà A,O,B thửng hàng=>góc COB+COA=180 độ
=>góc BOD+COB=180 độ
=>O,C,D thẳng hàng
tương tự chứng minh với E,O,F
b,Từ những tam giác bằng nhau ta có được OE=OF;CO=OD
xét tam giác OED và OCF có OE=OF; CO=OD; góc COF=EOD( 2 góc đối đỉnh)
=>góc FOD=CDE; DE=CF(2 cạnh tương ứng)
mà hai góc này ở vị trí so le trong của hai đoạn thẳng DE và CF được cắt bởi đoạn DC
=>DE//CF
học tốt
+ Vì \(Ax//By\left(gt\right)\)
\(\Rightarrow\widehat{BAx}=\widehat{ABy}\)( vì 2 góc so le trong ) (1)
Hay \(\widehat{OAC}=\widehat{OBD}\)
Xét \(\Delta OAC\)và \(\Delta OBD\)có :
\(OA=OB\) ( vì O là trung điểm của AB )
\(\widehat{OAC}=\widehat{OBD}\left(cmt\right)\)
\(AC=BD\left(gt\right)\)
Suy ra \(\Delta OAC=\Delta OBD\left(c.g.c\right)\)
\(\Rightarrow OC=OD\)( 2 cạnh tương ứng )
+ ) Từ (1) \(\Rightarrow\widehat{OAE}=\widehat{OBF}\)
Xét \(\Delta OAE\)và \(\Delta OBF\)có :
\(OA=OB\)( vi O là trung điểm của AB )
\(\widehat{OAE}=\widehat{OBF}\left(cmt\right)\)
\(AE=BF\left(gt\right)\)
Suy ra :\(\Delta OAE=\Delta OBF\left(c.g.c\right)\)
\(\Rightarrow OE=OF\)( 2 cạnh tương ứng )
Xét \(\Delta OED\)và \(\Delta OFC\)có :
\(OE=OF\left(cmt\right)\)
\(\widehat{EOD}=\widehat{FOC}\)( vì 2 góc đối đỉnh )
\(OD=OC\left(cmt\right)\)
Suy ra \(\Delta OED=\Delta OFC\left(c.g.c\right)\)
\(\Rightarrow ED=CF\)( 2 cạnh tương ứng ) (đpcm)
Chúc bạn học tốt !!!
vào link dưới đây:
https://olm.vn/hoi-dap/detail/63073899634.html