Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BE và AD là 2 đường trung tuyến=>G là trực tâm
=>BG=\(\dfrac{2}{3}\)BE=\(\dfrac{2}{3}\).9cm =6 cm
và GD= \(\dfrac{1}{2}\)AG=\(\dfrac{1}{2}\).8cm =4cm
KL
a: Xét ΔMEN và ΔMFP co
ME=MF
góc M chung
MN=NP
=>ΔMEN=ΔMFP
=>EN=FP
b: Xét ΔFNP và ΔEPN có
FN=EP
NP chung
FP=EN
=>ΔFNP=ΔEPN
=>góc ONP=góc OPN
=>ON=OP
Xét ΔMON và ΔMOP có
MO chung
ON=OP
MN=MP
=>ΔMON=ΔMOP
=>góc NMO=góc PMO
=>MO là phân giác của góc NMP
a: Xet ΔMHN vuông tại H và ΔMHP vuông tại H co
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: Xet ΔMNP có
MH,NE là đường trung tuyến
MH cắt NEtại G
=>G là trọng tâm
=>MG=2GH=12m
c: MG=2GH
GH=HC
=>MG=2HC
a, Xét tam giác ABC có G là trọng tâm
=> \(PG=\frac{1}{3}PC\) ( t/c trọng tâm tam giác )
Xét tam giác ABG có GP và AF là các trung tuyến
Mà GP cắt AF tại I nên I là trọng tâm
=> \(PI=\frac{1}{3}PG=\frac{1}{3}\cdot\frac{1}{3}PC=\frac{1}{9}PC\) ( đpcm )
Bài giải
Vì M là trung điểm của AB nên MA = MB = 6 : 2 = 3 cm
Trong tam giác AMG vuông tại A có :
\(MA^2+AC^2=MC^2\)
\(3^2+8^2=MC^2=73\)
\(\Rightarrow\text{ }MC=\sqrt{73}\text{ }cm\)
Ta có : \(MG=\frac{1}{3}MC=\frac{\sqrt{73}}{3}\)