Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{ab+ac}{4}=\dfrac{bc+ab}{6}=\dfrac{ca+cb}{8}=k\)
=>ab+ac=4k; bc+ab=6k; ac+bc=8k
=>ac-bc=-2k; ac+bc=8k; ab+ac=4k
=>ac=3k; bc=5k; ab=k
=>c/b=3; c/a=5
=>c=3b=5a
=>a/3=b/5=c/15
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\)
\(=\dfrac{ab+ac+bc+ba-ca-cb}{2+3-4}=\dfrac{2ab}{1}\) \(\left(1\right)\)
\(=\dfrac{bc+cb+bc+ba-ab-ac}{3+4-2}=\dfrac{2bc}{5}\left(2\right)\)
\(=\dfrac{ab+ac+ca+cb-bc-ba}{2+4-3}=\dfrac{2ac}{3}\)\(\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\dfrac{2ab}{1}=\dfrac{2bc}{5}=\dfrac{2ac}{3}\)
\(\dfrac{2ab}{1}=\dfrac{2bc}{5}\Leftrightarrow\dfrac{a}{1}=\dfrac{c}{15}\) \(\Leftrightarrow\dfrac{a}{3}=\dfrac{c}{15}\left(I\right)\)
\(\dfrac{2bc}{5}=\dfrac{2ac}{3}\Leftrightarrow\dfrac{b}{5}=\dfrac{a}{3}\left(II\right)\)
Từ \(\left(I\right)+\left(II\right)\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\left(đpcm\right)\)
Bạn tự kẻ hình nhá
Trên tia đối của tia MA lấy điểm D sao cho AM=MD
Xét △ACM và △ABM có
góc BMD=góc AMC
MC=BM
AM=MD
Nên △ACM=△ABM(c.g.c)
=>AC=BD
Xét △ABD có
AB+BD>AD( theo BĐT tam giác)
Mà AC=BD
=>AB+AC>AD
Mà AM=\(\dfrac{1}{2}AD\) hay AM=2.AD
=>AM<\(\dfrac{AB+AC}{2}\)(1)
Xét △ABM, ta có
AM>AB-BM (*)
Xét △ACM có
AM>AC-CM(**)
Từ (*) và (**), ta có
2.AM>AB+AC-BM+CM (mà BM+CM=BC)
=>2AM>AB+AC-BC
Hay AM>\(\dfrac{AB+AC-BC}{2}\)(2)
Từ (1) và (2)=>\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)(đpcm)
câu trả lời của mình bị báo cáo rồi ;-;
* còn gì nữa đâu mà khóc với sầu*
Ta có:
\(AD>AB-BD\) (BĐT trong \(\Delta ABD\) ) \(\left(1\right)\)
\(AD>AC-CD\) (BĐT trong \(\Delta ACD\) ) \(\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) cộng vế:
\(\Rightarrow2AD>AB-BD+AC-CD\\ \Rightarrow2AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)
Tương tự, ta có:
\(AD< AB+BD\) (BĐT trong \(\Delta ABD\) ) \(\left(4\right)\)
\(AD< AC+CD\) (BĐT trong \(\Delta ACD\) ) \(\left(5\right)\)
Từ \(\left(4\right)\left(5\right)\), cộng vế:
\(\Rightarrow2AD< AB+BD+AC+CD\\ \Rightarrow2AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)
mà
\(AD>\dfrac{AB+AC-BC}{2}\left(cmt\right)\\ \Rightarrow\dfrac{AB+AC-BC}{2}< AD< \dfrac{AB+AC+BC}{2}\)
\(AD>AB-BD\\ AD>AC-CD\\ \Rightarrow2.AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)
\(AD< AB+BD\\ AD< AC+CD\\ \Rightarrow2.AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)
a: \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Đặt AB/3=AC/4=BC/5=k
=>AB=3k; AC=4k; BC=5k
Vì \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
a: AC/AB=4/7 nên \(\dfrac{CA}{CB}=\dfrac{4}{7+4}=\dfrac{4}{11}\)
=>AB/CB=7/11
hay BC/AB=11/7
b: AC/BC=5/4
nên BC/AC=4/5
=>BA/AC=1/5
AB/BC=1/4
c: BC/AB=11/5
nên AB/BC=5/11
=>AC/BC=6/11
=>AB/AC=5/6