K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: Đặt AB/3=AC/4=BC/5=k

=>AB=3k; AC=4k; BC=5k

Vì \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

a)Ta có:

\(AB^2+AC^2= \left(3x\right)^2+\left(4x\right)^2=9x^2+16x^2=25x^2=\left(5x\right)^2=BC^2\)Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

b)Ta có:

\(AB^2+AC^2=\left(5x\right)^2+\left(12x\right)^2=25x^2+144x^2=169x^2=\left(13x\right)^2=BC^2\)

Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

c)Ta có:

\(AB^2+BC^2=\left(40x\right)^2+\left(9x\right)^2=1600x^2+81x^2=1681x^2=\left(41x\right)^2=AC^2\)

Theo định lí Pytago đảo, △ABC vuông tại B (đpcm)

d)Ta có:

\(20AB=15AC=12BC\Rightarrow\frac{20AB}{60}=\frac{15AC}{60}=\frac{12BC}{60}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\\BC=5k\end{matrix}\right.\)

\(\Rightarrow AB^2+AC^2=\left(3k\right)^2+\left(4k\right)^2=9k^2+16k^2=25k^2=\left(5k\right)^2=BC^2\)

Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

e)Ta có:

\(65AB=156AC=60BC\Rightarrow\frac{65AB}{780}=\frac{156AC}{780}=\frac{60BC}{780}\Rightarrow\frac{AB}{12}=\frac{AC}{5}=\frac{BC}{13}=k\)\(\Rightarrow\left\{{}\begin{matrix}AB=12k\\AC=5k\\BC=13k\end{matrix}\right.\)

\(\Rightarrow AB^2+AC^2=\left(12k\right)^2+\left(5k\right)^2=144k^2+25k^2=169k^2=\left(13k\right)^2=BC^2\)

Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

20 tháng 12 2020

Có: \(BC^2=(5x)^2=25x^2\)

\(AB^2+AC^2=(3x)^2+(4x)^2=9x^2+16x^2=25x^2\)

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow \Delta ABC\) vuông tại \(A\). (Định lý Py-ta-go đảo)

20 tháng 12 2020

thanks bạn

13 tháng 3 2020

1.

\(AB^2+AC^2=BC^2\\ hay\left(3x\right)^2+\left(4x\right)^2=\left(5x\right)^2\\\Leftrightarrow 9x^2+16x^2=25x^2\\\Leftrightarrow 25x^2=25x^2\left(tm\right)\)

Vậy trong trường hợp này \(\Delta ABC\) là tam giác vuông.

13 tháng 3 2020

2.

\(\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}=a\\ \Rightarrow\left\{{}\begin{matrix}AB=3a\\AC=4a\\BC=5a\end{matrix}\right.\)

Ta có: \(AB^2+AC^2=9a^2+16a^2=25a^2=BC^2=\left(5a\right)^2=25a^2\left(tm\right)\)

Vậy trong TH này tam giác ABC là tam giác vuông (Theo đl PTG đảo)

14 tháng 1 2020

giúp mình với

14 tháng 1 2020

mình cần gấp

a) Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)(gt)

nên \(AB=\dfrac{3}{4}\cdot AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{3}{4}\cdot AC\right)^2+AC^2=10^2\)

\(\Leftrightarrow\dfrac{9}{16}\cdot AC^2+AC^2=100\)

\(\Leftrightarrow AC^2=100:\left(\dfrac{9}{16}+1\right)=100:\dfrac{25}{16}=100\cdot\dfrac{16}{25}=64\)

hay AC=8(cm)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)(gt)

mà AC=8cm(cmt)

nên \(\dfrac{AB}{8}=\dfrac{3}{4}\)

hay AB=6(cm)

Vậy: AB=6cm; AC=8cm

b) Xét ΔABC vuông tại A và ΔADC vuông tại A có

AC chung

AB=AD(gt)

Do đó: ΔABC=ΔADC(hai cạnh góc vuông)

nên CB=CD(hai cạnh tương ứng) và \(\widehat{BCA}=\widehat{DCA}\)(hai góc tương ứng)

hay \(\widehat{BCE}=\widehat{DCE}\)

Xét ΔBEC và ΔDEC có

CB=CD(cmt)

\(\widehat{BCE}=\widehat{DCE}\)(cmt)

EC chung

Do đó: ΔBEC=ΔDEC(c-g-c)

5 tháng 2 2022

hình như vẫn chưa có hình