Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là giao điểm của 2 đường thẳng \(d_1,d_2\). Khi đó G(1;1) và G là trọng tâm của tam giác ABC. Gọi D là điểm đối xứng với A qua G suy ra tứ giác BGCD là một hình bình hành và D(-4;-1)
Gọi b là đường thẳng đi qua D và song song với \(d_1\)
Khi đó b có phương trình \(5\left(x+4\right)+3\left(y+1\right)=0\)
hay \(5x+3y+23=0\)
đường thẳng b cắt \(d_2\) tại điểm C có tọa độ là nghiệm của hệ :
\(\begin{cases}5x+3y+23=0\\3x+8y-11=4\end{cases}\)
Giải hệ thu được (x;y)=(-7;4)
Do đó C(-7;4)
Tương tự c là đường thẳng đi qua D và song song với \(d_2\) cắt \(d_1\) tại B(4;-4)
Khi đó \(\overrightarrow{BC}=\left(-11;8\right)\)
Suy ra BC có vec tơ pháp tuyến \(\overrightarrow{n}=\left(8;11\right)\), do đó có phương trình \(8\left(x-4\right)+11\left(y+4\right)=0\) hay \(8x+11y+12=0\)
Tìm tọa độ điểm A
Ta có: AB ∩ AC = A
=>Tọa độ điểm A là nghiệm hệ
{ 2x-3y-1=0 <=> { x = -5/11 => A(-5/11;-7/11)
{ 5x-2y+1=0`````````{ y = -7/11
♣Đương cao qua đỉnh A
Gọi (d) là đường cao qua đỉnh A
Vì (d) _|_ BC =>phương trình (d) dạng: 3x - y + m = 0
Vì A € (d) => 3.(-5/11) + 7/11 + m = 0 <=> m = 8/11
Vậy pt (d): 3x - y + 8/11 = 0 <=> 33x - 11y + 8 = 0
```````````````````
Bài 2a:Gọi (d') là đường thẳng đối xứng với (d) qua M
A(x;y) € (d) và B(x';y') là điểm đối xứng với A(x;y) qua M
=>B(x';y') € (d')
Vì M là trung điểm của AB
=>{ (x+x' )/2 = 2 =>{ x = 4 - x'
````{ (y+y' )/2 = 1 ````{ y = 2 - y'
=>A(4-x';2-y')
Vì A € (d) => 4-x' - (2 - y' ) = 0 <=> x' - y' - 2 = 0
Vậy pt (d'): x - y - 2 =0
Vì \(d_1\) là đường cao kẻ từ B nên đường thẳng AC vuông góc với \(d_1\)
Đường thẳng \(d_1\) có vec tơ pháp tuyến \(\overrightarrow{n}=\left(5;3\right)\) do đó nhận \(\overrightarrow{u}=\left(3;-5\right)\) làm vec tơ chỉ phương.
Vậy đường thẳng AC đi qua A(-4;5), với vec tơ pháp tuyến \(\overrightarrow{u}=\left(3;-5\right)\), do dó có phương trình \(3\left(x+4\right)-5\left(y-5\right)=0\) hay \(3x-5y+37=0\)
Đường thẳng AC cắt \(d_2\) tại C có tọa độ của hệ :
\(\begin{cases}3x+8y+11=0\\3x-5y+37=0\end{cases}\)
Giải hệ thu được (x;y)=(-9;2) do đó C(-9;2)
Tương tự như trên cũng được phương trình tổng quát AB là \(8x-3y+47=0\) và \(B\left(-3;\frac{23}{3}\right)\)
Từ đó \(\overrightarrow{BC}=\left(-6;-\frac{17}{3}\right)=-\frac{1}{3}\left(18;17\right)\)
Suy ra đường thẳng BC có vec tơ chỉ phương \(\overrightarrow{u}=\left(18;17\right)\) do đó nhận vec tơ \(\overrightarrow{n}=\left(17;-18\right)\) làm vec tơ pháp tuyến
Vậy BC có phương trình tổng quát \(17\left(x+9\right)-18\left(y-2\right)=0\) hay \(17x-18y+189=0\)