K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

BA<BC(gt)

mà góc đối diện với cạnh BA là \(\widehat{ACB}\)

và góc đối diện với cạnh BC là \(\widehat{BAC}\)

nên \(\widehat{BAC}>\widehat{ACB}\)(Quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Xét ΔABH vuông tại H và ΔAMH vuông tại H có

HB=HM(gt)

AH chung

Do đó: ΔABH=ΔAMH(hai cạnh góc vuông)

Suy ra: BA=MA(hai cạnh tương ứng)

Xét ΔBAM có BA=MA(cmt)

nên ΔBAM cân tại A(Định nghĩa tam giác cân)

Xét ΔBAM cân tại A có \(\widehat{B}=60^0\)(gt)

nên ΔBAM đều(Dấu hiệu nhận biết tam giác đều)

a) Xét ΔABC có

BC>AB(15cm>7cm)

mà góc đối diện với cạnh BC là \(\widehat{BAC}\)

và góc đối diện với cạnh AB là \(\widehat{ACB}\)

nên \(\widehat{BAC}>\widehat{ACB}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

a: Xét ΔABC có AB<BC

nên \(\widehat{ACB}< \widehat{BAC}\)

b: Xét ΔAMB có 
AH là đường cao

AH là đường trung tuyến

Do đó: ΔAMB cân tại A

mà \(\widehat{B}=60^0\)

nên ΔAMB đều

 

 

14 tháng 3 2022

Đề sai, xem lại đề

1 tháng 3 2020

Bạn tự vẽ hình nha 

1. Xét tam giác EBH có: BE=BH (gt) -> tan giác EBH cân tại B -> góc BEH = góc BHE

Ta lại có góc ABH = góc BEH + góc BHE (góc ngoài của tam giác EBH); Mà góc BEH = góc BHE (cmt) -> góc ABH = 2 góc BEH; Mà góc ABH = 2 góc ACB (gt)-> góc BEH = góc ACB ( đpcm)

2. Ta có: góc BHE = góc DHC (2 góc đối đỉnh); Mà góc BHE = góc BEH (cmt) và góc BEH = góc ACB (cmt) => góc DHC = góc ACB -> tam giác DHC cân tại D -> DH = DC ( 2 cạnh tương ứng)

Ta có: tam giác AHC vuông tại H -> góc HAC +góc ACB = 90 độ (2 góc ở đáy tam giác vuông ); Mà  góc AHD + góc DHC = 90 độ và góc ACB = góc DHC (cmt) -> góc HAC = góc AHD -> tam giác AHD cân tại D => DA = DH (2 cạnh tương ứng ) 

Vậy DH=DC=DA

3. Ta có tam giác ABB' có: BH = B'H ( H là trung điểm BB') -> AH là đường trung tuyến lại vừa là đường cao -> tam giác ABB' cân tại A -> góc ABH = góc AB'H (2 góc ở đáy)

Xét tam giác AB'C có: góc AB'H = góc B'AC + góc ACB' (góc ngoài); Mà góc ABH = góc AB'H (cmt) -> góc ABH = góc B'AC + góc ACB ; Mà góc ABH = 2 góc ACB'

-> góc B'AC = góc ACB' => tam giác AB'C cân tại B'

4. Bạn vẽ lại hình nha: giả sử tam giác ABC vuông tại A

Xét tam giác ADE và tam giác ABC có: góc A chung và góc BEH = góc ACB (cmt) -> hai tam giác đồng dạng theo trường hợp (g.g) -> góc ADE = góc ABC (2 góc tương ứng) (1) 

Ta có : góc HAD = 90 độ - góc C ( tam giác HAC vuông tại H); Mà góc ABC = 90 độ - góc C ( tam giác ABC vuông tại A) -> góc HAD = góc ABC (2)

Từ (1) và (2) -> góc ADE = góc HAD; Mà góc HAD = góc AHD nên suy ra tam giác AHD đều 

Xét tam giác ADE và tâm giác HAC có: góc EAD = góc CHA = 90 độ (gt); góc ADE = góc HAC (cmt); AD = AH (tam giác AHD đều) => tam giác ADE = tam giác HAC theo trường hợp (g.c.g)

=> DE = AC (2 cạnh tương ứng) => DE2 = AC2 ; Mà AC2 = BC2 - AB2 (định lí Py-ta-go trong tam giác ABC) => DE2 = BC2 - AB2 (đpcm) 

Học tốt nhé 🙋‍♀️🙋‍♀️🙋‍♀️💗💗💗

a) +Xét tam giác ABD :

ta có góc B = 60* ,góc BAD = 60*

mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )

=> góc ADB = 60*

=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm

ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm

+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :

AB^2 = AH^2 + BH^2 => em tự tính AH nhé

+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm

+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm

AC^2 =AH^2 + HC^2 => tự tính AC

b) em tính AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A