Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AB<BC
nên \(\widehat{ACB}< \widehat{BAC}\)
b: Xét ΔAMB có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAMB cân tại A
mà \(\widehat{B}=60^0\)
nên ΔAMB đều
a) Xét ΔABC có
BA<BC(gt)
mà góc đối diện với cạnh BA là \(\widehat{ACB}\)
và góc đối diện với cạnh BC là \(\widehat{BAC}\)
nên \(\widehat{BAC}>\widehat{ACB}\)(Quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Xét ΔABH vuông tại H và ΔAMH vuông tại H có
HB=HM(gt)
AH chung
Do đó: ΔABH=ΔAMH(hai cạnh góc vuông)
Suy ra: BA=MA(hai cạnh tương ứng)
Xét ΔBAM có BA=MA(cmt)
nên ΔBAM cân tại A(Định nghĩa tam giác cân)
Xét ΔBAM cân tại A có \(\widehat{B}=60^0\)(gt)
nên ΔBAM đều(Dấu hiệu nhận biết tam giác đều)
a) Xét ΔABC có
BC>AB(15cm>7cm)
mà góc đối diện với cạnh BC là \(\widehat{BAC}\)
và góc đối diện với cạnh AB là \(\widehat{ACB}\)
nên \(\widehat{BAC}>\widehat{ACB}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath