Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMEC có
\(\widehat{MBA}=\widehat{MCE}\)
MB=MC
\(\widehat{AMB}=\widehat{EMC}\)
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
nên MA=ME
hay M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
DO đó: ABEC là hình bình hành
SUy ra: AC//BE
c: Sửa đề: BH\(\perp\)AC
Xét ΔAHB vuông tại H và ΔEKC vuông tại K có
AB=EC
\(\widehat{HAB}=\widehat{KEC}\)
Do đó:ΔAHB=ΔEKC
Suy ra: BH=CK
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
mà \(\widehat{BHC}=90^0\)
nên BHCK là hình chữ nhật
Suy ra: KH=BC
1: Xét ΔABM và ΔECM có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó:ΔABM=ΔECM
2: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó:ABEC là hình bình hành
Suy ra: AC//BE
Bạn tự vẽ hình nhé!
a/ Vì AB // CE nên \(\widehat{ABC}=\widehat{BCE}\)( vì là 2 góc so le trong )
Ta có: \(\widehat{AMB}=\widehat{CME}\)( vì là 2 góc đối đỉnh )
Xét tam giác AMB và tam giác CEM có:
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BCE}\left(cmt\right)\\BM=MC\left(gt\right)\\\widehat{AMB}=\widehat{CME}\left(cmt\right)\end{cases}}\)
suy ra tam giác ABM = tam giác ECM ( g.c.g)
Nhớ k cho mình nhé! Thank you!!!
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
b: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
a: Xét ΔMAB và ΔMEC có
\(\widehat{MBA}=\widehat{MCE}\)
MB=MC
\(\widehat{AMB}=\widehat{EMC}\)
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
nên MA=ME
hay M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
DO đó: ABEC là hình bình hành
SUy ra: AC//BE
c: Sửa đề: BH\(\perp\)AC
Xét ΔAHB vuông tại H và ΔEKC vuông tại K có
AB=EC
\(\widehat{HAB}=\widehat{KEC}\)
Do đó:ΔAHB=ΔEKC
Suy ra: BH=CK
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
mà \(\widehat{BHC}=90^0\)
nên BHCK là hình chữ nhật
Suy ra: KH=BC