Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMEC có
\(\widehat{MBA}=\widehat{MCE}\)
MB=MC
\(\widehat{AMB}=\widehat{EMC}\)
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
nên MA=ME
hay M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
DO đó: ABEC là hình bình hành
SUy ra: AC//BE
c: Sửa đề: BH\(\perp\)AC
Xét ΔAHB vuông tại H và ΔEKC vuông tại K có
AB=EC
\(\widehat{HAB}=\widehat{KEC}\)
Do đó:ΔAHB=ΔEKC
Suy ra: BH=CK
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
mà \(\widehat{BHC}=90^0\)
nên BHCK là hình chữ nhật
Suy ra: KH=BC
a: Xét ΔMAB và ΔMEC có
\(\widehat{MBA}=\widehat{MCE}\)
MB=MC
\(\widehat{AMB}=\widehat{EMC}\)
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
nên MA=ME
hay M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
DO đó: ABEC là hình bình hành
SUy ra: AC//BE
c: Sửa đề: BH\(\perp\)AC
Xét ΔAHB vuông tại H và ΔEKC vuông tại K có
AB=EC
\(\widehat{HAB}=\widehat{KEC}\)
Do đó:ΔAHB=ΔEKC
Suy ra: BH=CK
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
mà \(\widehat{BHC}=90^0\)
nên BHCK là hình chữ nhật
Suy ra: KH=BC
Xét T/G ABC và DCM
CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)
Có T/G ABC=DCM -> Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC
C) Xét T/G BFM và CEM có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) -> BFM=CEM(g.c.g)
-> ME=MF -> M là trung điểm EF
a, Xét t/g ABM và t/g DCM có:
AM=DM(gt)
BM=CM(gt)
góc AMB=góc DMC (đối đỉnh)
=>t/g ABM=t/g DCM (c.g.c)
b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)
Mà 2 góc này là cặp góc so le trong
=> AB//DC
c, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
BM=CN(gt)
góc BME = góc CMF (đối đỉnh)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>EM=FM (2 cạnh t/ứ)
=>M là trung điểm của EF
4:
b: Xét tứ gác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CD
ko có dữ kiện " K là giao điểm của Bx và BE" nha, mình ghi nhầm.
a: Xét ΔMBA và ΔMCE có
MB=MC
góc BMA=góc CME
MA=ME
Do dó: ΔMBA=ΔMCE
b: Xét ΔBAF có
BH vừa là đường cao, vừa là phân giác
nên ΔBAF cân tại B
=>BA=BF=CE
1: Xét ΔABM và ΔECM có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó:ΔABM=ΔECM
2: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó:ABEC là hình bình hành
Suy ra: AC//BE