K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABM và ΔECM có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó:ΔABM=ΔECM

2: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó:ABEC là hình bình hành

Suy ra: AC//BE

a: Xét ΔMAB và ΔMEC có 

\(\widehat{MBA}=\widehat{MCE}\)

MB=MC

\(\widehat{AMB}=\widehat{EMC}\)

Do đó: ΔMAB=ΔMEC

b: Ta có: ΔMAB=ΔMEC

nên MA=ME

hay M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

DO đó: ABEC là hình bình hành

SUy ra: AC//BE

c: Sửa đề: BH\(\perp\)AC

Xét ΔAHB vuông tại H và ΔEKC vuông tại K có

AB=EC

\(\widehat{HAB}=\widehat{KEC}\)

Do đó:ΔAHB=ΔEKC

Suy ra: BH=CK

Xét tứ giác BHCK có

BH//CK

BH=CK

Do đó: BHCK là hình bình hành

mà \(\widehat{BHC}=90^0\)

nên BHCK là hình chữ nhật

Suy ra: KH=BC

a: Xét ΔMAB và ΔMEC có 

\(\widehat{MBA}=\widehat{MCE}\)

MB=MC

\(\widehat{AMB}=\widehat{EMC}\)

Do đó: ΔMAB=ΔMEC

b: Ta có: ΔMAB=ΔMEC

nên MA=ME

hay M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

DO đó: ABEC là hình bình hành

SUy ra: AC//BE

c: Sửa đề: BH\(\perp\)AC

Xét ΔAHB vuông tại H và ΔEKC vuông tại K có

AB=EC

\(\widehat{HAB}=\widehat{KEC}\)

Do đó:ΔAHB=ΔEKC

Suy ra: BH=CK

Xét tứ giác BHCK có

BH//CK

BH=CK

Do đó: BHCK là hình bình hành

mà \(\widehat{BHC}=90^0\)

nên BHCK là hình chữ nhật

Suy ra: KH=BC

22 tháng 12 2017

a b c m d 1 2 3 4 e f

Xét T/G ABC và DCM 

CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)

Có T/G ABC=DCM ->  Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC

C) Xét T/G BFM và CEM  có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) ->  BFM=CEM(g.c.g)

-> ME=MF ->  M là trung điểm EF 

22 tháng 12 2017

A B C M D E F

a, Xét t/g ABM và t/g DCM có:

AM=DM(gt)

BM=CM(gt)

góc AMB=góc DMC (đối đỉnh)

=>t/g ABM=t/g DCM (c.g.c)

b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)

Mà 2 góc này là cặp góc so le trong

=> AB//DC

c, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

BM=CN(gt)

góc BME = góc CMF (đối đỉnh)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>EM=FM (2 cạnh t/ứ)

=>M là trung điểm của EF

16 tháng 12 2021

4:

b: Xét tứ gác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//CD

28 tháng 12 2018

ko có dữ kiện " K là giao điểm của Bx và BE" nha, mình ghi nhầm.

14 tháng 12 2022

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

Do dó: ΔMBA=ΔMCE
b: Xét ΔBAF có

BH vừa là đường cao, vừa là phân giác

nên ΔBAF cân tại B

=>BA=BF=CE