K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

Tham khảo nha : https://olm.vn/hoi-dap/question/131605.html

20 tháng 7 2019

https://olm.vn/hoi-dap/detail/9148079003.html

Tham khảo nhé

(๑→ܫ←)Hanna Maia(❍ᴥ❍ʋ)

5 tháng 1 2018

Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

5 tháng 1 2018

Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

5 tháng 1 2018

A B C M D E F N

Ta có AM là đường trung tuyến , AE = 2/3 AM nên E là trọng tâm tam giác.

Vậy thì BE cắt AC tại trung điểm AC.

Ta chỉ cần chứng minh DF cũng cắt AC tại trung điểm của AC. Thật vậy:

Gọi giao điểm của DF và AC là N. 

Giả sử AN = kNC.

Dùng diện tích ta có: 

\(\frac{S_{ADN}}{S_{ACF}}=\frac{S_{ABC}}{3}:\frac{S_{ABC}}{2}=\frac{2}{3}\)

\(\Rightarrow3\left(S_{ADN}+S_{ANF}\right)=2\left(S_{NCF}+S_{ANF}\right)\)

\(\Rightarrow3S_{ADN}+S_{ANF}=2S_{NCF}\Rightarrow S_{ANM}+S_{ANF}=S_{MNC}+S_{NCF}\)

\(\Rightarrow kS_{MNC}+kS_{NCF}=S_{MNC}+S_{NCF}\Rightarrow k=1\)

hay AN = NC.

Vậy N là trung điểm AC.

Từ đó ta có BE, AC, DF đồng quy tại trung điểm N của AC.

24 tháng 7 2018

A B C M D E N F

Nối C với E. Xét \(\Delta\)DMF có: C là trung điểm MF; E là trung điểm DM

=> CE là đường trung bình \(\Delta\)DMF => CE // DF hay CE // DN

Xét \(\Delta\)EAC: D là trung điểm AE; DN // CE , N thuộc AC => N là trung điểm AC

Trong \(\Delta\)ABC có: Trung tuyến AM, E thuộc AM (ME=1/3.AM) => E là trọng tâm \(\Delta\)ABC

Do N là trung điểm AC nên BN là trung tuyến \(\Delta\)ABC => BN  đi qua E (trọng tâm \(\Delta\)ABC)

Hay 3 điểm B;E;N thẳng hàng (đpcm). 

21 tháng 9 2017

hình thì nhờ Toshiro Kiyoshi nha bn

Y
10 tháng 8 2019

Gọi I là giao điểm của BE và AC

K là giao điểm của DI và BC

Cần CM : \(K\equiv F\)

+ ΔABC có E thuộc đg trung tuyến AM, \(AE=\frac{2}{3}AM\)

=> E là trọng tâm ΔABC

=> BI là đg trung tuyến của ΔABC => AI = CI

+ ΔABC có đg trung tuyến BI, E là trọng tâm

=> BE = 2EI

+ DI là đg trung bình của ΔACE

=> DI // CE => CE // IK

ΔBIK có CE // IK theo dịnh lý Ta-lét ta có :

\(\frac{BE}{EI}=\frac{BC}{CK}=2\Rightarrow BC=2CK\)

\(\Rightarrow CM=CK\Rightarrow K\equiv F\)

Vậy ta có đpcm