Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=2\sqrt{13}\)
\(BM=\frac{3}{4}BC=\frac{3\sqrt{13}}{2}\)
\(cosB=\frac{BA^2+BC^2-AC^2}{2BA.BC}=\frac{\sqrt{13}}{13}\)
\(\Rightarrow AM=\sqrt{AB^2+BM^2-2AB.BM.cosB}=\frac{3\sqrt{21}}{2}\)
Do quá dài nên mình ghi luôn nha
AM = 6,87 = \(\frac{3\sqrt{21}}{2}\)
Gọi AD là phân giác trong của \(\Delta\)ABC. Kéo dài DM cắt BE và CA lần lượt tại N và F, AN cắt BC tại P.
Dễ thấy \(\Delta\)ADB cân tại D có trung tuyến DM, suy ra DM là trung trực của AB
Do vậy ^DAN = ^DBN = 90o suy ra AP vuông góc AD hay AP là phân giác ngoài của \(\Delta\)ABC
Từ đó \(\left(BCPD\right)=-1\). Áp dụng phép chiếu xuyên tâm N: \(\left(BCPD\right)\rightarrow\left(ECFA\right)\)
Khi đó (ECFA) là hàng điều hòa. Mà ^AMF = 90o nên MA chính là phân giác của ^CME (đpcm).
sai đề hay sao ý bạn. nếu góc BAC= 1200 thì không thỏa mãn hai góc ABO và AOB. vì BAC+ ABO+ AOB= 180 mà AOB= 900 nên phương trình kia ko thỏa mãn 120+ 90+ ABO=180