K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

Chọn B

Ta có  S 8 =    n 2 . [   2 u 1 + ​   ( n − 1 ) d ]

⇒  72 = ​​​ 8 2 .   [ 2. u 1 + ​ ( 8 − 1 ) .    ( − 2 ) ] ⇔ 72  = 4 .​ (​2u 1 ​​ − 14 ) ⇔ 18 = 2 u 1 − 14 ⇔ 2 u 1 = 32 ⇔ u 1 = 16

15 tháng 4 2017

Đáp án B

Mọi người giải giúp mk với ạ Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1. Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1 Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10 Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10. Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, . Câu 318. Cho...
Đọc tiếp

Mọi người giải giúp mk với ạ

Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1.

Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1

Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10

Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10.

Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, .

Câu 318. Cho dãy số có giới hạn (un) xác định bởi : -,n 21 2-u C. -1. D. B. 1. A. 0. 1 1 1 [2

Câu 319. Tìm giá trị đúng của S = 2| 1+-+ 2 48 2" C. 2 2. D. B. 2. A. 2 +1. 4" +2"+1 bằng :

Câu 320. Lim4 3" + 4"+2 1 B. D. +oo. A. 0. In+1-4

Câu 321. Tính giới hạn: lim Vn+1+n C.-1. D. B.O. A. 1. +(2n +1)- * 3n +4 1+3+5+...+ 3n 14,

Câu 322. Tính giới hạn: lim C. 2 3 B. D. 1. A. 0. 1 nlat1) +......+

Câu 323. Tính giới hạn: lim n(n+1) 1.2 2.3 3 C. 21 D. Không có giới hạn. B. 1. A. 0.

0
19 tháng 3 2019

Ta có: 

S 8 =    n 2 . 2. u 1   + ​ ( n − 1 ) d ⇔   72 =    8 2 .    2. u 1 +    ( 8 − 1 ) . ( − 2 ) ⇔ 72 =    4. ( 2 u 1 − 14 )    ⇔ 2 u 1 − 14 =    18 ⇔ 2 u 1 = 32    ⇔ u 1 = 16

Chọn đáp án A

NV
12 tháng 2 2020

\(\left\{{}\begin{matrix}u_1=a\\u_{n+1}=\frac{1}{2}u_n\end{matrix}\right.\)

\(\Rightarrow u_n\) là CSN với công bội \(q=\frac{1}{2}\)

\(\Rightarrow u_n=a.\left(\frac{1}{2}\right)^{n-1}\)

\(\Rightarrow lim\left(u_n\right)=lim\left(\frac{a}{2^{n-1}}\right)=0\)