Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có u n = n − 1 n + 1 = 1 − 2 n + 1
Xét hiệu u n + 1 − u n = 1 − 2 n + 2 − 1 − 2 n + 1
= 2 n + 1 − 2 n + 2 = 2 ( n + 2 ) − 2 ( n + 1 ) ( n + 1 ) . ( n + 2 ) = 2 ( n + 1 ) ( n + 2 ) > 0 ∀ n ∈ ℕ *
Kết luận dãy số ( u n ) là dãy số tăng.
Chọn đáp án D.
\(u_n=\dfrac{1}{n+1}\Rightarrow u_{n+1}=\dfrac{1}{n+2}\)
\(\Rightarrow u_n-u_{n+1}=\dfrac{1}{n+1}-\dfrac{1}{n+2}=\dfrac{1}{\left(n+1\right)\left(n+2\right)}>0\)
\(\Rightarrow u_{n+1}< u_n\Rightarrow\) dãy giảm
Do \(\dfrac{1}{n+1}>0\Rightarrow\) dãy bị chặn dưới bởi 0
\(u_n-1=\dfrac{1}{n+1}-1=-\dfrac{n}{n+1}< 0\Rightarrow u_n< 1\)
\(\Rightarrow\) Dãy bị chặn trên bởi 1
\(\Rightarrow\) Dãy bị chặn
+ Xét tính tăng giảm.
Với mọi n ∈ N ta có:
⇒ un + 1 < un với mọi n ∈ N.
⇒ (un) là dãy số giảm.
+ Xét tính bị chặn.
un > 0 với mọi n.
⇒ (un) bị chặn dưới.
un ≤ u1 = √2 - 1 với mọi n
⇒ (un) bị chặn trên.
⇒ (un) bị chặn.
Chọn B.
Trước hết bằng quy nạp ta chứng minh: (un) 1 < un ≤ 2, ∀ n
Điều này đúng với n = 2, giả sử 1 < un < 2 ta có: nên ta có đpcm.
Mà .
Vậy dãy (un) là dãy giảm và bị chặn.
Chọn A