K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Ta có  u n = n − 1 n + 1 = 1 − 2 n + 1

Xét hiệu  u n + 1 − u n = 1 − 2 n + 2 − 1 − 2 n + 1

= 2 n + 1 − 2 n + 2 =    2 ( ​ n + 2 ) − 2 ( n + 1 ) ( n + 1 ) . ( n + 2 ) = 2 ( n + 1 ) ( n + 2 ) > 0    ∀ n ∈ ℕ *

Kết luận dãy số ( u n )   là dãy số tăng.

Chọn đáp án D.

22 tháng 3 2018

Giải bài 4 trang 92 sgk Đại số 11 | Để học tốt Toán 11

Với mọi n ∈ N có:

Giải bài 4 trang 92 sgk Đại số 11 | Để học tốt Toán 11

⇒ (un) là dãy số tăng.

9 tháng 2 2018

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

+ Xét tính tăng giảm.

Với mọi n ∈ N ta có:

Giải bài 7 trang 107 sgk Đại số 11 | Để học tốt Toán 11

⇒ un + 1 < un với mọi n ∈ N.

⇒ (un) là dãy số giảm.

+ Xét tính bị chặn.

un > 0 với mọi n.

⇒ (un) bị chặn dưới.

un ≤ u1 = √2 - 1 với mọi n

⇒ (un) bị chặn trên.

⇒ (un) bị chặn.

21 tháng 6 2019

Đáp án C

16 tháng 7 2017

Đáp án B

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lời giải:

Với $n$ lẻ bất kỳ:
$u_n<0; u_{n+1>0; u_{n+2}< 0$

$\Rightarrow u_n< u_{n+1}> u_{n+2}$ với mọi $n$ lẻ bất kỳ

Do đó dãy không tăng cũng không giảm.