K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

Đáp án B.

Đặt  t = 2 + log   u 1 - 2 log   u 10 ≥ 0

⇔ 2 log   u 1 - 2 log   u 10 = t 2 - 2 , 

khi đó giả thiết trở thành:

log   u 1 - 2 log   u 10 + 2 + log   u 1 - 2 log   u 10 = 0

⇔ t 2 + t - 2 = 0  

<=> t = 1 hoặc t = -2

⇒ log   u 1 - 2 log   u 10 = - 1

⇔ log   u 1 + 1 = 2 log   u 10

⇔ log 10 u 1 = log u 10 2 ⇔ 10 u 1 = u 10 2   ( 1 )

Mà un+1 = 2un => un là cấp số nhân với công bội q = 2

=> u10 = 29 u1 (2)

Từ (1), (2) suy ra

10 u 1 = 9 9 u 1 2 ⇔ 2 18 u 1 2 = 10 u 1 ⇔ u 1 = 10 2 18

⇒ u n = 2 n - 1 . 10 2 18 = 2 n . 10 2 19 .

Do đó  u n > 5 100 ⇔ 2 n . 10 2 19 > 5 100

⇔ n > log 2 5 100 . 2 19 10 = - log 2 10 + 100 log 2 5 + 19 ≈ 247 , 87

Vậy giá trị n nhỏ nhất thỏa mãn là n = 248.

NV
14 tháng 12 2018

\(log\left(5\left(x^2+1\right)\right)\ge log\left(mx^2+4x+m\right)\)

- BPT đúng \(\forall x\Rightarrow log\left(mx^2+4x+m\right)\) xác định \(\forall x\in R\)

\(\Rightarrow mx^2+4x+m>0\) \(\forall x\in R\)

\(\Rightarrow\left\{{}\begin{matrix}a=m>0\\\Delta'=4-m^2< 0\end{matrix}\right.\) \(\Rightarrow m>2\) (1)

- Lại có \(x^2+1\ge1\) \(\forall x\)

\(\Rightarrow5\left(x^2+1\right)\ge mx^2+4x+m\)

\(\Leftrightarrow5\left(x^2+1\right)-4x\ge m\left(x^2+1\right)\)

\(\Leftrightarrow5-\dfrac{4x}{x^2+1}\ge m\)

Đặt \(f\left(x\right)=5-\dfrac{4x}{x^2+1}\Rightarrow f\left(x\right)\ge m\) \(\forall x\Leftrightarrow m\le min\left(f\left(x\right)\right)\)

Ta có \(f\left(x\right)=3+2-\dfrac{4x}{x^2+1}=3+\dfrac{2\left(x-1\right)^2}{x^2+1}\ge3\)

\(\Rightarrow min\left(f\left(x\right)\right)=3\Rightarrow m\le3\) (2)

Kết hợp (1), (2) \(\Rightarrow2< m\le3\Rightarrow m=3\)

Vậy có 1 giá trị nguyên duy nhất của m để BPT đúng với mọi x

Đáp án B

NV
1 tháng 8 2020

Đặt \(log_5\left(x+5\right)=a\Rightarrow x+5=5^a\)

\(\Rightarrow a^2-\left(m+6\right)log_25^a+m^2+9=0\)

\(\Leftrightarrow a^2-a\left(m+6\right)log_25+m^2+9=0\)

\(\Delta=\left(m+6\right)^2.log^2_25-4\left(m^2+9\right)\ge0\)

\(\Leftrightarrow\left(log^2_25-4\right)m^2+\left(12log_2^25\right).m+36\left(log_2^25-1\right)\ge0\)

Bấm máy BPT trên và lấy số nguyên gần nhất ta được \(m\ge-2\Rightarrow\)\(20+2+1=23\) giá trị nguyên của m

5 tháng 5 2018

Đk: x > -1/3

<=> 3x+1 < x+7

<=> x < 3

kết hợp đk --> -1/3 < x < 3

--> nghiệm nguyên của x = { 0; 1 ; 2 }

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

NV
13 tháng 4 2020

ĐKXĐ: \(x>0\)

\(\Leftrightarrow log_2^2\left(2x\right)+log_2\left(2x\right)-log_28-9< 0\)

\(\Leftrightarrow log_2^2\left(2x\right)+log_2\left(2x\right)-12< 0\)

\(\Leftrightarrow\left(log_2\left(2x\right)+4\right)\left(log_2\left(2x\right)-3\right)< 0\)

\(\Leftrightarrow-4< log_2\left(2x\right)< 3\)

\(\Leftrightarrow\frac{1}{16}< 2x< 8\Leftrightarrow\frac{1}{32}< x< 4\)

NV
30 tháng 10 2019

Xét trên miền \(\left(1;+\infty\right)\):

ĐKXĐ: \(x^3-mx+1>0\)

\(\Leftrightarrow x^3+1>mx\Leftrightarrow x^2+\frac{1}{x}>m\) \(\forall x\in\left(1;+\infty\right)\)

\(\Leftrightarrow m< \min\limits_{\left(1;+\infty\right)}f\left(x\right)\)

\(f\left(x\right)=x^2+\frac{1}{x}\Rightarrow f'\left(x\right)=2x-\frac{1}{x^2}=0\Rightarrow x=\frac{1}{\sqrt[3]{2}}\)

\(\Rightarrow f\left(x\right)\) đồng biến trên \(\left(1;+\infty\right)\)

\(\Rightarrow f\left(x\right)>f\left(1\right)=2\Rightarrow m\le2\)

Có 2 giá trị nguyên dương của m là \(m=\left\{1;2\right\}\) thỏa mãn

30 tháng 10 2019

Sao lại có m=2 nữa ạ, em tưởng m<2 thôi

18 tháng 4 2020

Cảm ơn ạ

NV
30 tháng 5 2019

Câu 1:

Hệ điều kiện: \(\left\{{}\begin{matrix}2x^2+3>x^2+mx+1\\x^2+mx+1>0\end{matrix}\right.\) \(\forall x\in R\)

Xét BPT đầu tiên:

\(\Leftrightarrow x^2-mx+2>0\) \(\forall x\)

\(\Leftrightarrow\Delta=m^2-8< 0\Rightarrow-2\sqrt{2}< m< 2\sqrt{2}\)

Xét BPT thứ 2:

\(x^2+mx+1>0\)

\(\Leftrightarrow\Delta=m^2-4< 0\Rightarrow-2< m< 2\)

Kết hợp lại ta được \(-2< m< 2\)

NV
30 tháng 5 2019

Câu 2:

\(\left|x+2+\left(y-3\right)i\right|=2\sqrt{2}\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2=8\)

\(\Rightarrow\) Quỹ tích z là các điểm \(M\left(x;y\right)\) nằm trên đường tròn (C) tâm \(I\left(-2;3\right)\) bán kính \(R=2\sqrt{2}\)

Gọi \(A\left(-1;-6\right);B\left(7;2\right)\)\(C\left(3;-2\right)\) là trung điểm AB

\(\Rightarrow P=\left|z+1+6i\right|+\left|z-7-2i\right|=MA+MB\)

Gọi d là đường thẳng qua C và I, cắt đường tròn (C) tại D trong đó I nằm giữa C và D

\(\Rightarrow P_{max}\) khi \(M\equiv D\)

\(\overrightarrow{CI}=\left(-5;5\right)\Rightarrow\) đường thẳng CI nhận \(\overrightarrow{n_{CI}}=\left(1;1\right)\) là 1 vtpt

\(\Rightarrow\)Phương trình CI: \(x+y-1=0\)

Tọa độ D là nghiệm: \(\left\{{}\begin{matrix}\left(x+2\right)^2+\left(y-3\right)^2=8\\x+y-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-4\end{matrix}\right.\)

\(\Rightarrow y=1-x=5\Rightarrow\left\{{}\begin{matrix}x=-4\\y=5\end{matrix}\right.\)