Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Ta có u n là cấp số nhân công bội bằng 2.
Ta có
2 4 u 1 + 1 + 2 3 - 2 u 2 = 2 4 u 1 + 1 + 2 3 - 4 u 1 ≥ 2 2 4 u 1 + 1 . 2 3 - 4 u 1 = 8
Mặt khác
Suy ra
Vậy 2 4 u 1 + 1 + 2 3 - 2 u 2 = 8 log 2 ( 2 u 3 2 - 8 u 2 + 4 )
suy ra giá trị nhỏ nhất của n cần tìm là 2021
Chọn C
Phương pháp: Dễ thấy u n = u n - 1 + 6 , ∀ n ≥ 2 suy ra dãy số đã cho là cấp số cộng công sai bằng 6.
Vậy ta cần tìm số hạng đầu.
Cách giải: Ta có
log 2 u 5 + log 2 u 9 + 8 = 11
V ậ y u 1 = u 5 - 4 . 6 = 8
Do đó:
S n = u 1 + u 2 + . . + u n
= n u 1 + n ( n - 1 ) 2 d
= 3 n 2 + 5 n
⇔ 3 n 2 + 5 n - 32 > 0
Vậy số tự nhiên n nhỏ nhất thỏa mãn S n ≥ 2 5 là 3.
Phương pháp:
Ứng với mỗi giá trị của n = 1, n = 2 ta tính các giá trị u2, u3 rồi tính giá trị của biểu thức.
Cách giải:
Ta có:
u n + 1 = u n + n , u 1 = 3
Chọn B
Chọn A.
Trước hết ta chứng minh 1 < un < 4
Điều này hiển nhiên đúng với n = 1.
Giả sử 1 < un < 4, ta có:
Ta chứng minh (un) là dãy tăng
Ta có u1 < u2, giả sử un-1 < un, ∀ n ≤ k.
Khi đó:
Vậy dãy (un) là dãy tăng và bị chặn.
\(u_n=2u_{n-1}+3n-1\)
\(\Leftrightarrow u_n+3n+5=2\left(u_{n-1}+3\left(n-1\right)+5\right)\)
Đặt \(u_n+3n+5=v_n\Rightarrow\left\{{}\begin{matrix}v_1=10\\v_n=2v_{n-1}\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội 2
\(\Rightarrow v_n=10.2^{n-1}\Rightarrow u_n+3n+5=10.2^{n-1}\)
\(\Leftrightarrow u_n=10.2^{n-1}-3n-5\)
\(\Rightarrow u_{2019}=10.2^{2018}+3.2019-1=...\)
Chọn D.
Ta có
Đặt
suy ra (vn) là cấp số nhân với
Suy ra u1 + u2 + … + un = (v1 + v2 + … + vn) – n.2/3
Yêu cầu bài toán:
Vậy giá trị nhỏ nhất của n thỏa mãn bài toán là n = 146.