K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ND
1
15 tháng 9 2021
\(AB=\sqrt{\dfrac{BC^2}{2}}=\sqrt{\dfrac{9a^2}{2}}=\sqrt{\dfrac{18a^2}{4}}=\dfrac{3a\sqrt{2}}{2}\)
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{18a^2}{4}:2=\dfrac{18a^2}{8}=\dfrac{9a^2}{4}\)
TN
1
NV
Nguyễn Việt Lâm
Giáo viên
6 tháng 7 2021
\(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cosA=2a.2a.cos60^0=2a^2\)
\(2\overrightarrow{AB}.3\overrightarrow{HC}=6\left(\overrightarrow{AH}+\overrightarrow{HB}\right).\overrightarrow{HC}=6\overrightarrow{AH}.\overrightarrow{HC}+6\overrightarrow{HB}.\overrightarrow{HC}\)
\(=6\overrightarrow{HB}.\overrightarrow{HC}=-6HC^2=-6a^2\)
BH là đường cao nên cũng là đường trung trực của tam giác ABC đều
\(\Rightarrow BH\perp AC\) tại H cũng là trung điểm của BC
\(\Rightarrow AH=HC=\dfrac{1}{2}AC=\dfrac{3}{2}a\)
Vì \(\Delta AHB\) vuông tại H nên \(BH=\sqrt{AB^2-AH^2}=\sqrt{9a^2-\dfrac{9}{4}a^2}=\dfrac{3a\sqrt{3}}{2}\)
\(S_{ABC}=\dfrac{1}{2}BH\cdot AC=\dfrac{1}{2}\cdot\dfrac{3a\sqrt{3}}{2}\cdot3a=\dfrac{9a^2\sqrt{3}}{4}\left(đvdt\right)\)