K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

à bạn hỏi cô và bạn của bạn ý !ngoài ra bạn có thể hỏi google hoặc bố mẹ

chứ ở đây không có ai trả lời một cách chính xác đâu hoặc là chúng nó chép ở đâu ý

6 tháng 4 2022

Có: \(f\left(x\right)=ax^2+bx+c=5\) với mọi x

=> \(f\left(2\right)=4a+2b+c=5\)

=> \(4a+2b+c-5=5-5=0\)

6 tháng 4 2022

Cảm ơn bn nha

19 tháng 4 2017

f(2)=a.22+b.2+c=5

=> 4a+2b+c=5

=>4a+2b+c-5=0 (ĐPCM)

Bài này dễ mà Khánh

ta có f(2)= 4a+2b+c=5 => f(2) - 5 = 4a+2b+c-5=0 

20 tháng 5 2018

Ta có :

f(1) + f(-2) = a + b + c + 4a - 2b + c = 5a - b + 2c = 0

\(\Rightarrow\)f(1) = -f(-2)

Do đó : f(1) . f(-2) = -[f(-2)]2 \(\le\)0

21 tháng 4 2018

Thay \(x=1\) và đa thức \(f\left(x\right)=ax^2+bx+c\) ta được : 

\(f\left(x\right)=a.1^2+b.1+c\)

\(f\left(x\right)=a+b+c\)

Mà giả thuyết cho \(a+b+c=0\) nên \(f\left(x\right)=a+b+c=0\)

Vậy \(x=1\) là một nghiệm của đa thức \(f\left(x\right)=ax^2+bx+c\)

Chúc bạn học tốt ~ 

21 tháng 4 2018

Cảm ơn nhé!

3 tháng 3 2022

a, Theo bài ra ta có \(\hept{\begin{cases}f\left(0\right)=c=0\\f\left(1\right)=a+b+c=2013\\f\left(-1\right)=a-b+c=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2013\\a-b=2012\end{cases}}\)

Cộng vế với vế \(a+b+a-b=2013+2012\Leftrightarrow2a=4025\Leftrightarrow a=\frac{4025}{2}\)

\(\Rightarrow b=\frac{4025}{2}-2012=\frac{1}{2}\)

Vậy \(a=\frac{4025}{2};b=\frac{1}{2};c=0\)

28 tháng 5 2015

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\) 

 

1 tháng 4 2019

Bài làm

a) Giả sử P(x) có một nghiệm là 1 thì:

p(1)=a*1^2+b*1+c

      =a+b+c

Mà a+b+c=0

=>p(1)=0

=>đa thức p(x) có 1 nghiệm là 1(ĐPCM)

b)Giả sử P(x) có 1 nghiệm là -1 thì

p(-1)=a*(-1)^2+b*(-1)+c

       =a-b+c

Mà a-b+c=0

=>p(-1)=0

=> đa thức p(x) có một nghiệm là -1(ĐPCM)

c)TA có:

p(1)=a*1^2+b*1+c=a+b+c

p(-1)=a.(-1)^2+b*(-1)+c=a-b+c

Mà p(1)=p(-1)

=>a+b+c=a-b+c

=>a+b+c-a+b-c=0

=>2b=0  =>b=0

+) Với b=0 =>p(x)=ax^2+c (1)

                   =>p(-x)=a*(-x)^2+c=a*x+c  (2)

Từ (1)và (2) =>p(x)=p(-x) (ĐPCM)