Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left[\left(a+b\right)+\left(c+d\right)+e\right]^2\)
\(=\left(a+b\right)^2+\left(c+d\right)^2+e^2+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2ab+2cd+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
Do \(2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)chia hết cho 2 và \(\left(a^2+b^2+c^2+d^2+e^2\right)\)chia hết cho 2 nên \(\left(a+b+c+d+e\right)^2\)chia hết cho 2
\(\Rightarrow a+b+c+d+e\)chia hết cho 2
Đồng thời có \(a+b+c+d+e>2\)( Bắt buộc )
\(\Rightarrow\)a+b+c+d+e là hợp số
Bài này mình nhóm 3 số lại để trở thành hẳng đẳng thức đơn giản cho bạn dễ hiểu.
em lớp 6 nhìn bài giảng của chị CTV hoa hết cả mắt chẳng hiểu chi nổi.
em xin trình bày cách của em lập luận có gì thiếu sót chị chỉ bảo .
a^2+b^2+c^2+d^2+e^2 chia hết cho 2
* nếu a,b,c,d,e đều chẵn => hiển nhiên A=(a+b+c+d+e) là hợp số vì a,b,c,d,e>0
*nếu trong số (a,b,c,d,e) có số lẻ bình phương số lẻ là một số lẻ vậy do vậy số các con số lẻ phải chẵn
như vậy a+b+c+d+e cũng là một số chắn
mà a,b,c,d,e>0 do vậy a+b+c+d+e khác 2 vậy a+b+c+d+e=2k với k khác 1 => dpcm.
( ở đây em chỉ cần khác 2 loại số nguyên tố chẵn ) thực tế a+b+c+d+e >6)
- = hợp số
- vì bình phương của abcdeg bằng 2
- mà 2 lại là hợp số
- nên abcdeg là hợp số
Giả sử a,b,c,d,e,g đồng thời là lẻ
1 số chính phương lẻ khi chia 8 chỉ dư 1
=>a2+b2+c2+d2+e2 chia 8 dư 5
Ta có vế trái chia 8 dư 5, vế phải chia 8 dư 1, phương trình ko xảy ra
Vậy 6 số đã cho ko thể đồng thời là số lẻ
Gỉa sử tồn tại a,b,c,d,e,f,g thỏa mãn=>\(a^2,b^2,c^2,d^2,e^2\)chia 8 dư 1=> \(g^2\)chia 8 dư 5=> ko là số chính phương
=>ko tồn tại a,b,c,d,e,g lẻ
Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)
Lại có \(a^2-a=a\left(a-1\right)⋮2\)
Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)
\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)
Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)
Xét a^2-a = a.(a-1) chia hết cho 2
Tương tự : b^2-b;c^2-c;d^2-d;e^2-e đều chia hết cho 2
=> (a^2+b^2+c^2+d^2+e^2)-(a+b+c+d) chia hết cho 2
Mà a^2+b^2+c^2+d^2+e^2 chia hết cho 2 => a+b+c+d chia hết cho 2
Lại có : a+b+c+d+e > 2 => a+b+c+d+e là hợp sô
Tk mk nha
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2.
Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2
=> a2 + b2 + c2 + d2 = 2( b2 + d2 ) là số chẵn.
Do đó a + b + c + d là số chẵn
Mà a + b + c + d > 2 (Do a, b, c, d thuộc N*) a + b + c + d là hợp số.