Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: Ta có: \(n^2-7⋮n+3\)
\(\Leftrightarrow n^2-9+2⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{-2;-4;-1;-5\right\}\)
b: Ta có: \(n+3⋮n^2-7\)
\(\Leftrightarrow n^2-9⋮n^2-7\)
\(\Leftrightarrow n^2-7\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{3;-3\right\}\)
c: Ta có: \(n+4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-2;2;-4\right\}\)
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
a) (x-3)+(y+2)=6
<=>x+y-1=6
<=>x+y=7
Bài này thì có vô số nghiệm
Câu 3 và câu 4 thì tớ làm rồi nhé!
Câu 7:
+) Với p = 2 => p + 2 = 2 + 2 = 4 (là hợp số)
=> p = 2 (loại)
+) Với p = 3 => p + 2 = 3 + 2 = 5 (là số nguyên tố)
=> p + 10 = 3 + 10 = 13 (là số nguyên tố)
+) Với p > 3; p là số nguyên tố thì p có dạng là 3k + 1 hoặc 3k + 2
-) p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 = 3 . (k + 1) \(⋮\) 3 (là hợp số)
=> p = 3k + 1 (loại)
-) p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3 . (k + 4) \(⋮\) 3 (là hợp số)
=> p = 3k + 2 (loại)
=> p chỉ có thể bằng 3
Vậy p = 3 thì p + 2 và p + 10 là số nguyên tố.
4)
b) \(A=4+4^3+4^5+.....+4^{2015}\)
\(A=\left(4+4^3\right)+\left(4^5+4^7\right)+.....+\left(4^{2013}+4^{2015}\right)\)
\(A=4\left(1+4^2\right)+4^5\left(1+4^2\right)+....+4^{2013}\left(1+4^2\right)\)
\(A=4.17+4^5.17+....+4^{2013}.17\)
\(A=\left(4+4^5+......+4^{2013}\right)17\) chia hết cho 5
Vậy A chia hết cho 5
Bài 1:
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+22+23+...+2100 chia hết cho 2
A=2+22+23+24+...+299+2100
A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+23 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số
c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0
A=0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2