Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
BÀI 1:
a) \(n+3\)\(⋮\)\(n-1\)
\(\Leftrightarrow\)\(n-1+4\)\(⋮\)\(n-1\)
Ta thấy \(n-1\)\(⋮\)\(n-1\)
nên \(4\)\(⋮\)\(n-1\)
hay \(n-1\)\(\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta lập bảng sau:
\(n-1\) \(-4\) \(-2\) \(-1\) \(1\) \(2\) \(4\)
\(n\) \(-3\) \(-1\) \(0\) \(2\) \(3\) \(5\)
Vậy....
a) Ta có: n + 3 chia hết cho n - 1
=> n - 1 + 4 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư (4)
=> n - 1 thuộc { 1; -1; 4; -4 }
=> n thuộc { 2; 0; 5; -3 }
b) Ta có: 2n - 1 chia hết cho n + 2
=> 2n + 4 - 5 chia hết cho n + 2
Mà 2n + 4 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư (5)
=> n + 2 thuộc { 1; -1; 5; -5 }
=> n thuộc { -1; -3; 3; -7 }
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
a) (x-3)+(y+2)=6
<=>x+y-1=6
<=>x+y=7
Bài này thì có vô số nghiệm