K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

Cho phương trình px2 + qx +1 = 0 (1) với p;q là các số hữu tỉ . Biết ... Thay nghiệm x = (√5 - √3)/(√5 + √3) = 4 - √15 vào pt khai triển và thu gọn ta có: ... Vì p, q hữu tỉ nên VT của (*) hữu tỉ còn VP vô tỉ. Dođó muốn (*) nghiệm đúng thì ta phải có đồng thời: { 31p + 4q + 1 = 0 { 8p + q = 0. Dễ dàng giải hệ này có p = 1; q = - 8

14 tháng 3 2018

Chắc pt đầu là x^2+mx+n (:))

Từ điều kiện ta có m khác p, n khác q

Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)

Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ

Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ

cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_-