K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

Cho phương trình px2 + qx +1 = 0 (1) với p;q là các số hữu tỉ . Biết ... Thay nghiệm x = (√5 - √3)/(√5 + √3) = 4 - √15 vào pt khai triển và thu gọn ta có: ... Vì p, q hữu tỉ nên VT của (*) hữu tỉ còn VP vô tỉ. Dođó muốn (*) nghiệm đúng thì ta phải có đồng thời: { 31p + 4q + 1 = 0 { 8p + q = 0. Dễ dàng giải hệ này có p = 1; q = - 8

14 tháng 3 2018

Chắc pt đầu là x^2+mx+n (:))

Từ điều kiện ta có m khác p, n khác q

Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)

Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ

Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ

cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ

11 tháng 6 2017

Có phải m=-10 không nhỉ?
^^ 

12 tháng 6 2017

Áp dụng vi-et ta suy ra được nghiệm là:

\(\hept{\begin{cases}x=\frac{-m-\sqrt{m^2-4n}}{2}\\x=\frac{-m+\sqrt{m^2-4n}}{2}\end{cases}}\)

Ta có: 

\(x_1=x_2^2+x_2+2\)

\(\Leftrightarrow x_1+x_2=\left(x_2+1\right)^2+1\)

\(\Leftrightarrow-m=\left(x_2+1\right)^2+1\)

Với \(\hept{\begin{cases}x_2=\frac{-m-\sqrt{m^2-4n}}{2}\\n=6-m\end{cases}}\)

\(\Leftrightarrow-m=\frac{\left(m-2\right)\sqrt{m^2+4m-24}+m^2-10}{2}+1\)

\(\Leftrightarrow-2m-m^2+8=\left(m-2\right)\sqrt{m^2+4m-24}\)

\(\Leftrightarrow4m^3+24m^2-144m+160=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=-10\\m=2\left(l\right)\end{cases}}\)

Tương tự cho trường hợp còn lại.