K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

a, Ta có : \(x=81\Rightarrow\sqrt{x}=9\)

Thay \(\sqrt{x}=9\)vào biểu thức A ta được : 

\(A=\frac{2}{9+1}=\frac{2}{10}=\frac{1}{5}\)

b, Ta có : \(P=\frac{B}{A}\)hay\(P=\frac{\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}}{\frac{2}{\sqrt{x}+1}}\)

\(=\frac{1+\sqrt{x}}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c, Ta có \(\frac{1}{2}=\frac{\sqrt{x}}{2\sqrt{x}}\)mà \(\sqrt{x}< \sqrt{x}+1\)

nên \(P>\frac{1}{2}\)

12 tháng 5 2021

a) \(A=\frac{2}{\sqrt{x}+1}=\frac{2}{\sqrt{81}+1}=\frac{2}{9+1}=\frac{1}{5}\)

b) \(B=\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}\)

\(=\frac{1+\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}=\frac{1}{\sqrt{x}}\)

\(\Rightarrow P=\frac{B}{A}=\frac{1}{\sqrt{x}}\div\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c) Ta có: \(P=\frac{\sqrt{x}+1}{2\sqrt{x}}=\frac{1}{2}+\frac{1}{\sqrt{x}}+\frac{1}{2}+0=\frac{1}{2}\)

=> P>1/2

17 tháng 1 2022

a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)

\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)

\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)

\(=\left(4-8+25\right)\sqrt{x^2+1}\)

\(=21\sqrt{x^2+1}\)

17 tháng 1 2022

b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)

\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)

\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)

\(B=\sqrt{3}\)

28 tháng 4 2021

bạn tham khảo nha : https://loigiaihay.com/bai-76-trang-41-sgk-toan-9-tap-1-c44a26988.html

17 tháng 5 2021
a) a √ a 2 − b 2 − ( 1 + a √ a 2 − b 2 ) : b a − √ a 2 − b 2 = a √ a 2 − b 2 − a + √ a 2 − b 2 √ a 2 − b 2 ⋅ a − √ a 2 − b 2 b = a √ a 2 − b 2 − a 2 − ( √ a 2 − b 2 ) 2 b √ a 2 − b 2 = a √ a 2 − b 2 − a 2 − ( a 2 − b 2 ) b √ a 2 − b 2 = a √ a 2 − b 2 − b 2 b ⋅ √ a 2 − b 2 = a √ a 2 − b 2 − b √ a 2 − b 2 = a − b √ a 2 − b 2 = √ a − b ⋅ √ a − b √ a − b ⋅ √ a + b (do a > b > 0 )$ = √ a − b √ a + b Vậy Q = √ a − b √ a + b . b) Thay a = 3 b vào Q = √ a − b √ a + b , ta được: Q = √ 3 b − b √ 3 b + b = √ 2 b √ 4 b = √ 2 b √ 2 ⋅ √ 2 b = 1 √ 2 = √ 2 2 .
13 tháng 5 2021

Ta có: \(\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)=9\)

\(\Leftrightarrow\frac{\left(a-\sqrt{a^2+9}\right)\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)

\(\Leftrightarrow\frac{-9\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)

\(\Rightarrow b+\sqrt{b^2+9}=\sqrt{a^2+9}-a\)

Tương tự chỉ ra được: \(a+\sqrt{a^2+9}=\sqrt{b^2+9}-b\)

Cộng vế 2 PT trên lại ta được:

\(a+b+\sqrt{a^2+9}+\sqrt{b^2+9}=\sqrt{a^2+9}+\sqrt{b^2+9}-a-b\)

\(\Leftrightarrow2\left(a+b\right)=0\Rightarrow a=-b\)

Thay vào M ta được:

\(M=2a^4-a^4-6a^2+8a^2-10a+2a+2026\)

\(M=a^4+2a^2-8a+2026\)

\(M=\left(a^4+2a^2-8a+5\right)+2021\)

\(M=\left[\left(a^4-a^3\right)+\left(a^3-a^2\right)+\left(3a^2-3a\right)-\left(5a-5\right)\right]+2021\)

\(M=\left(a-1\right)\left(a^3+a^2+3a-5\right)+2021\)

\(M=\left(a-1\right)^2\left(a^2+2a+5\right)+2021\)\(\ge0+2021=2021\)

Dấu "=" xảy ra khi: a = 1 => b = -1

Vậy Min(M) = 2021 khi a = 1 và b = -1

24 tháng 4 2021

+ Ta có:

33+1=3(3−1)(3+1)(3−1)=33−3.1(3)2−12

=33−33−1=33−32.

+ Ta có:

23−1=2(3+1)(3−1)(3+1)=2(3+1)(3)2−12

=2(3+1)3−1=2(3+1)2=3+1.

+ Ta có:

2+32−3=(2+3).(2+3)(2−3)(2+3)=(2+3)222−(3)2

=22+2.2.3+(3)24−3=4+43+31=(4+3)+431

=7+431=7+43.

+ Ta có:

b3+b=b(3−b)(3+b)(3−b)

=b(3−b)32−(b)2=b(3−b)9−b;(b≠9).

+ Ta có:

p2p−1=p(2p+1)(2p−1)(2p+1)

=p(2p+1)(2p)2−12=p(2p+1)4p−1

#Ye Chi-Lien

24 tháng 4 2021

\(\frac{3}{\sqrt{3}+1}=\frac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3\sqrt{3}-3}{3-1}=\frac{3\sqrt{3}-3}{2}\)

\(\frac{2}{\sqrt{3}-1}=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{2\left(\sqrt{3}+1\right)}{3-1}=\sqrt{3}-1\)

\(\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3}=\left(2+\sqrt{3}\right)^2=4+4\sqrt{3}+3=7+4\sqrt{3}\)

\(\frac{b}{3+\sqrt{b}}=\frac{b\left(3-\sqrt{b}\right)}{\left(3+\sqrt{b}\right)\left(3-\sqrt{b}\right)}=\frac{b\left(3-\sqrt{b}\right)}{9-b}\)

\(\frac{p}{2\sqrt{p}-1}=\frac{p\left(2\sqrt{p}+1\right)}{\left(2\sqrt{p}-1\right)\left(2\sqrt{b}+1\right)}=\frac{p\left(2\sqrt{b}+1\right)}{4p-1}\)

13 tháng 5 2021

a, Để pt trên có 2 nghiệm pb thì \(\Delta>0\)

\(\Delta=4m^2-4m+1+20=\left(2m-1\right)^2+20>0\forall m\)( đpcm )

15 tháng 5 2021

Câu a:  Ta có \(\Delta\)= (1-2m)2-4.1.5= (2m-1)2+20>0 với mọi m

    ⇒Phương trình luôn có 2 nghiệm phân biệt với mọi m

Câu b:

Để phương trình có 2 nghiệm nguyên thì  \(\left\{{}\begin{matrix}\Delta>0\left(luondung\right)\\S\in Z\\P\in Z\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2m-1\in Z\\-5\in Z\left(tm\right)\end{matrix}\right.\)  

19 tháng 1 2022

a, \(-\frac{2}{3}\sqrt{ab}=-\sqrt{\frac{4ab}{9}}\)

b, \(a\sqrt{\frac{3}{a}}=\sqrt{\frac{3a^2}{a}}=\sqrt{3a}\)

c, \(a\sqrt{7}=\sqrt{7a^2}\)

d, \(b\sqrt{3}=\sqrt{3b^2}\)

e, \(ab\sqrt{\frac{a}{b}}=\sqrt{\frac{a^3b^2}{b}}=\sqrt{a^3b}\)

f, \(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\frac{a^2b^2}{a}+\frac{a^2b^2}{b}}=\sqrt{ab^2+a^2b}\)

3 tháng 10 2022

a, −23ab=−4ab9

b, a3a=3a2a=3a

c, a7=7a2

d, b3=3b2

e, abab=a3b2b=a3b

f, 

 

28 tháng 4 2021

Lời giải chi tiết

a) Gọi OO là trung điểm của BC⇒OB=OC=BC2.BC⇒OB=OC=BC2.   (1)

Vì DODO là đường trung tuyến của tam giác vuông DBCDBC.

Theo tính chất trung tuyến ứng với cạnh huyền, ta có:  

             OD=12BCOD=12BC                                          (2)

Từ (1) và (2) suy ra OD=OB=OC=12BCOD=OB=OC=12BC

Do đó ba điểm B, D, CB, D, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Lập luận tương tự, tam giác BEC vuông tại E có EO là đường trung tuyến ứng với cạnh huyền BC nên OE=OB=OC=12BCOE=OB=OC=12BC

Suy ra ba điểm B, E, CB, E, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Do đó 4 điểm B, C, D, EB, C, D, E cùng thuộc đường tròn (O)(O) đường kính BCBC. 

b) Xét đường (O;BC2)(O;BC2), với BCBC là đường kính.

Ta có DEDE là một dây cung không đi qua tâm nên  ta có BC>DEBC>DE ( vì trong một đường tròn, dây lớn nhất là đường kính).

16 tháng 8 2021

a) Gọi \mathrm{M} là trung điểm của \mathrm{BC}.

Ta có EM=\dfrac{1}{2} BC, DM=\dfrac{1}{2} BC.

Suy ra ME=MB=MC=MD

do đó B, E, D, C cùng thuộc đường tròn đường kính BC.

b) Trong đường tròn nói trên, DE là dây, BC là đường kính nên DE<BC