Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(Q=\dfrac{a}{\sqrt{a^2-b^2}}-\left(1+\dfrac{a}{\sqrt{a^2-b^2}}\right):\dfrac{b}{a-\sqrt{a^2-b^2}}\)
\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\dfrac{a-\sqrt{a^2-b^2}}{b}\)
\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{b}{\sqrt{a^2-b^2}}=\dfrac{a-b}{\sqrt{a^2-b^2}}=\dfrac{\sqrt{a-b}}{\sqrt{a+b}}\)
b. Thay \(a=3b\) vào \(Q\), ta được
\(Q=\dfrac{\sqrt{3b-b}}{\sqrt{3b+b}}=\dfrac{\sqrt{2b}}{\sqrt{4b}}=\dfrac{1}{\sqrt{2}}\)
a) Vì khi a>0 và \(a\notin\left\{4;1\right\}\) thì \(\left\{{}\begin{matrix}\sqrt{a}-1\ne0\\\sqrt{a}\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\)
nên Q xác định
b) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
Để Q dương thì \(\sqrt{a}-2>0\)
\(\Leftrightarrow a>4\)
Kết hợp ĐKXĐ, ta được: a>4
a: \(Q=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\cdot\dfrac{a-\sqrt{a^2-b^2}}{b}\)
\(=\dfrac{ab}{b\left(\sqrt{a^2-b^2}\right)}-\dfrac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)
\(=\dfrac{ab-a^2+a^2-b^2}{b\sqrt{a^2-b^2}}=\dfrac{ab-b^2}{b\sqrt{a^2-b^2}}=\dfrac{a-b}{\sqrt{a^2-b^2}}\)
b: Khi a=3b thì \(Q=\dfrac{3b-b}{\sqrt{9b^2-b^2}}=\dfrac{2b}{\sqrt{8b^2}}=\dfrac{2b}{2\sqrt{2}\cdot b}=\dfrac{1}{\sqrt{2}}\)
LG a
(1−a√a1−√a+√a).(1−√a1−a)2=1(1−aa1−a+a).(1−a1−a)2=1 với a≥0a≥0 và a≠1a≠1
Phương pháp giải:
+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.
+ √A2=|A|A2=|A|.
+ |A|=A|A|=A nếu A≥0A≥0,
|A|=−A|A|=−A nếu A<0A<0.
+ Sử dụng các hằng đẳng thức:
a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2
a2−b2=(a+b).(a−b)a2−b2=(a+b).(a−b).
a3−b3=(a−b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2).
Lời giải chi tiết:
Biến đổi vế trái để được vế phải.
Ta có:
VT=(1−a√a1−√a+√a).(1−√a1−a)2VT=(1−aa1−a+a).(1−a1−a)2
=(1−(√a)31−√a+√a).(1−√a(1−√a)(1+√a))2=(1−(a)31−a+a).(1−a(1−a)(1+a))2
=((1−√a)(1+√a+(√a)2)1−√a+√a).(11+√a)2=((1−a)(1+a+(a)2)1−a+a).(11+a)2
=[(1+√a+(√a)2)+√a].1(1+√a)2=[(1+a+(a)2)+a].1(1+a)2
=[(1+2√a+(√a)2)].1(1+√a)2=[(1+2a+(a)2)].1(1+a)2
=(1+√a)2.1(1+√a)2=1=VP=(1+a)2.1(1+a)2=1=VP.
LG b
a+bb2√a2b4a2+2ab+b2=|a|a+bb2a2b4a2+2ab+b2=|a| với a+b>0a+b>0 và b≠0b≠0
Phương pháp giải:
+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.
+ √A2=|A|A2=|A|.
+ |A|=A|A|=A nếu A≥0A≥0,
|A|=−A|A|=−A nếu A<0A<0.
+ Sử dụng các hằng đẳng thức:
a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2
a2−b2=(a+b).(a−b)a2−b2=(a+b).(a−b).
a3−b3=(a−b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2).
Lời giải chi tiết:
Ta có:
VT=a+bb2√a2b4a2+2ab+b2VT=a+bb2a2b4a2+2ab+b2
=a+bb2√(ab2)2(a+b)2=a+bb2(ab2)2(a+b)2
=a+bb2√(ab2)2√(a+b)2=a+bb2(ab2)2(a+b)2
=a+bb2|ab2||a+b|=a+bb2|ab2||a+b|
=a+bb2.|a|b2a+b=|a|=VP=a+bb2.|a|b2a+b=|a|=VP
Vì a+b>0⇒|a+b|=a+ba+b>0⇒|a+b|=a+b.
Bài 1 : Rút gọn biểu thức :
\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)
\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)
\(=-10\sqrt{2}+10-7+30\sqrt{2}\)
\(=20\sqrt{2}+3\)
Bài 2:
a) ĐKXĐ : x # 4 ; x # - 4
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)
Vậy, để P = 2 thì x = 16.
Bài 1:
a) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b) Để Q dương thì \(\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)
mà \(3\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ
nên \(\sqrt{a}-2>0\)
\(\Leftrightarrow\sqrt{a}>2\)
hay a>4
Kết hợp ĐKXĐ,ta được: a>4
Vậy: Để Q dương thì a>4
bạn tham khảo nha : https://loigiaihay.com/bai-76-trang-41-sgk-toan-9-tap-1-c44a26988.html