Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)
=\(\dfrac{\left(x-y\right).z}{xyz}+\dfrac{\left(y-z\right).x}{xyz}+\dfrac{\left(z-x\right).y}{xyz}\)
=\(\dfrac{xz-yz}{xyz}+\dfrac{xy-xz}{xyz}+\dfrac{yz-xy}{xyz}\)
=\(\dfrac{xz-yz+xy-xz+yz-xy}{xyz}\)
=\(\dfrac{0}{xyz}\)=0
Vậy biểu thức trên ko phụ thuộc vào x,y,z
b,\(\dfrac{1}{\left(x-y\right).\left(y-z\right)}-\dfrac{1}{\left(x-z\right).\left(y-z\right)}-\dfrac{1}{\left(x-y\right).\left(x-z\right)}\)
=\(\dfrac{1.\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}-\dfrac{\left(x-y\right).1}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}-\dfrac{1\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
=\(\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=\(\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=0
Vậy biểu thức trên ko phụ thuộc vào x,y,z
Ta có: A= \(\dfrac{xy+2y+1}{xy+x+y+1}+\dfrac{yz+2z+1}{yz+y+z+1}\) +\(\dfrac{zx+2x+1}{zx+z+x+1}\)
=\(\dfrac{xy+2y+1}{\left(x+1\right)\left(y+1\right)}+\dfrac{yz+2z+1}{\left(y+1\right)\left(z+1\right)}\) +\(\dfrac{zx+2x+1}{\left(x+1\right)\left(z+1\right)}\)
=\(\dfrac{\left(xy+2y+1\right)\left(z+1\right)}{\left(z+1\right)\left(y+1\right)\left(x+1\right)}\)+\(\dfrac{\left(yz+2z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)+\(\dfrac{\left(y+1\right)\left(zx+2x+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
Đặt B =(z+1)(xy+2y+1)+(yz+2z+1)(x+1)+(y+1)(zx+2x+1)
=>B= xyz+2yz+z+xy+2y+1+xyz+2zx+x+yz+2z+1+xyz+2xy+y+xz+2x+1 = 3xyz+3yz+3z+3xy+3y+3+3xz+3x = 3(xyz+yz +x+1+xy+y+xz+z) =3[yz(x+1)+(x+1)+y(x+1)+z(x+1)] =3(x+1)(yz+y+z+1)=3(x+1)(y+1)(1+z)
=> A=\(\dfrac{B}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=\(\dfrac{3\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=3
Vậy A=3 với mọi x,y,z
chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*
Toán Tuổi Thơ 2 số 178 Bài 6 chứ gì
Ta có:\(xy+yz+zx+x+y+z\)
\(=xyz+xy+yz+zx+x+y+z+1-xyz-1\)
\(=xy\left(z+1\right)+x\left(z+1\right)+y\left(z+1\right)+\left(z+1\right)-xyz-1\)
\(=\left(xy+x+y+1\right)\left(z+1\right)-xyz-1\)
\(=\left[x\left(y+1\right)+\left(y+1\right)\right]\left(z+1\right)-xyz-1\)
\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)-xyz-1\)
Lần lượt thay \(x=\frac{b}{a-b};y=\frac{c}{b-c};z=\frac{a}{c-a}\) vào ta có:
\(xy+yz+zx+x+y+z\)
\(=\left(\frac{b}{a-b}+1\right)\left(\frac{c}{b-c}+1\right)\left(\frac{a}{c-a}+1\right)-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)
\(=\frac{a}{a-b}.\frac{b}{b-c}.\frac{c}{c-a}-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)
\(=-1\)
Vậy giá trị của \(xy+yz+zx+x+y+z\) không phụ thuộc vào a,b,c
Ta có
x2-yz=a
y2-zx=b
z2-xy=c
=>x3-xyz=ax
y3-xyz=by
z3-xyz=cz
=> x3+y3+z3-3xyz=ax+by+cz
Lại có
x3+y3+z3-3xyz
=(x+y)3-3x2y-3xy2+z3-3xyz
=[(x+y)3+z3]-3xy(x+y+z)
Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:
=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)
=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=(x+y+z)(x2+y2+z2-xy-yz-zx)
( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)
ak mình nhầm tẹo srr nha, đến chỗ
(x+y+z)(x2+y2+z2-xy-yz-zx)
Vì x2-yz=a, y2-zx=b, z2- xy=c
=>x2+y2+z2-xy-yz-zx=a+b+c
=>ax+by+cz=(x+y+z)(a+b+c)
=> DPCM
A,
Ta có : a + b + c =1
<=> ( a +b + c) 2 = 1
<=> a2 + b2 + c2 + 2 (ab +bc +ac ) =1
=> ab + bc +ac = 0
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{z}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\left\{{}\begin{matrix}x=a\left(x+y+z\right)\\y=b\left(x+y+z\right)\\z=c\left(x+y+z\right)\end{matrix}\right.\)
xy + yz +zx
= ab(x+y+z)2 + bc (x+y+z)2 + ca(x+y+z)2
= (ab+bc +ca ) ( x+y+z)2 =0
2. Vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
Ta có: \(\frac{1}{x^3}+\frac{1}{y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^3-3\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=-\frac{1}{z^3}-\frac{3}{xy}.\left(-\frac{1}{z}\right)=-\frac{1}{z^3}+\frac{3}{xyz}\)
Do đó: \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Ta lại có: \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)