K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

Ta có

C = xyz – (xy + yz + zx) + x + y + z – 1

= (xyz – xy) – (yz – y) – (zx – x) + (z – 1)

= xy(z – 1) – y(z – 1) – x(z – 1) + (z – 1)

= (z – 1)(xy – y – x + 1)

= (z – 1).[y(x – 1) – (x – 1)]

= (z – 1)(y – 1)(x – 1)

Với x = 9; y = 10; z = 101 ta có

C = (101 – 1)(10 – 1)(9 – 1) = 100.9.8 = 7200

Đáp án cần chọn là: C

22 tháng 10 2021

\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)

\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)

\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

29 tháng 12 2018

Ta có: A= \(\dfrac{xy+2y+1}{xy+x+y+1}+\dfrac{yz+2z+1}{yz+y+z+1}\) +\(\dfrac{zx+2x+1}{zx+z+x+1}\)

=\(\dfrac{xy+2y+1}{\left(x+1\right)\left(y+1\right)}+\dfrac{yz+2z+1}{\left(y+1\right)\left(z+1\right)}\) +\(\dfrac{zx+2x+1}{\left(x+1\right)\left(z+1\right)}\)

=\(\dfrac{\left(xy+2y+1\right)\left(z+1\right)}{\left(z+1\right)\left(y+1\right)\left(x+1\right)}\)+\(\dfrac{\left(yz+2z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)+\(\dfrac{\left(y+1\right)\left(zx+2x+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

Đặt B =(z+1)(xy+2y+1)+(yz+2z+1)(x+1)+(y+1)(zx+2x+1)

=>B= xyz+2yz+z+xy+2y+1+xyz+2zx+x+yz+2z+1+xyz+2xy+y+xz+2x+1 = 3xyz+3yz+3z+3xy+3y+3+3xz+3x = 3(xyz+yz +x+1+xy+y+xz+z) =3[yz(x+1)+(x+1)+y(x+1)+z(x+1)] =3(x+1)(yz+y+z+1)=3(x+1)(y+1)(1+z)

=> A=\(\dfrac{B}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=\(\dfrac{3\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=3

Vậy A=3 với mọi x,y,z

8 tháng 8 2019

chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*

9 tháng 3 2021
Tôi nghĩ Minh nói đúng đấy,bạn đủ thông minh để làm đấy
6 tháng 12 2017

a,\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)

=\(\dfrac{\left(x-y\right).z}{xyz}+\dfrac{\left(y-z\right).x}{xyz}+\dfrac{\left(z-x\right).y}{xyz}\)

=\(\dfrac{xz-yz}{xyz}+\dfrac{xy-xz}{xyz}+\dfrac{yz-xy}{xyz}\)

=\(\dfrac{xz-yz+xy-xz+yz-xy}{xyz}\)

=\(\dfrac{0}{xyz}\)=0

Vậy biểu thức trên ko phụ thuộc vào x,y,z

6 tháng 12 2017

b,\(\dfrac{1}{\left(x-y\right).\left(y-z\right)}-\dfrac{1}{\left(x-z\right).\left(y-z\right)}-\dfrac{1}{\left(x-y\right).\left(x-z\right)}\)

=\(\dfrac{1.\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}-\dfrac{\left(x-y\right).1}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}-\dfrac{1\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

=\(\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=\(\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=0

Vậy biểu thức trên ko phụ thuộc vào x,y,z