Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A = (3n + 5)/(n + 4)`
`<=> 17/(n + 4)` là nguyên
`=> n + 4 in Ư (17) = {1; -1; 17; -17}`
`=> n = -3; -5; 13; -21`
bn phải ghi cách lm ra lun chứ ko là thầy mik cx cho 0 lun
p/s: cái này ko liên quan đến bài
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3
Ta tách như sau:
\(\frac{3n+5}{6n}=\frac{1}{2}+\frac{5}{6n}\)
+ Nếu n là số nguyên âm thì \(\frac{1}{2}+\frac{5}{6n}<\frac{1}{2}\forall n\) (Bởi vì \(\frac{5}{6n}<0\))
+ Nếu n là số nguyên dương thì \(\frac{1}{2}+\frac{5}{6n}\le\frac{1}{2}+\frac{5}{6}=\frac{4}{3}\forall n\)
Vậy maxP = \(\frac{4}{3}\) khi n = 1.
Chúc em học tốt ^^
\(A=\dfrac{3n-5}{n-4}\) lớn nhất
\(\Leftrightarrow n-4\) nhỏ nhất
\(\Leftrightarrow n-4=1\)
\(\Leftrightarrow n=5\)
Vậy ...