Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)
Ta có \(a^3+b^3=32\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)=32\left(^∗\right)\)
\(a^3.b^3=\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)
\(\Rightarrow ab=-4\)
Kết hợp với \(\left(^∗\right)\) \(\Rightarrow\left(a+b\right)^3+12\left(a+b\right)=32\)
\(\Rightarrow a+b=2=x\)
Thay \(x=2\)vào \(f\left(x\right)\)ta được :
\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016}^{^{2017}}=1^{2016^{2017}}=1\)
Chúc bạn học tốt !!!
Đề là \(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-3\right)\sqrt{4-\sqrt{15}}\)
Hay \(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\) bạn?
Như bạn ghi thì ko có gì đặc biệt để tính ra kết quả đẹp đâu
Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)
Ta có: a3 + b3 = 32
=> (a + b)3 - 3ab(a + b) = 32 (*)
a3.b3 = \(\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)
=> ab = -4
Kết hợp với (*) => (a + b)3 + 12(a + b) = 32
=> a + b = 2 = x
Thay x = 2 vào f(x) ta được:
\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016^{2017}}=1^{2016^{2017}}=1\)
Ta có:
\(x^3=6+3x.\sqrt[3]{9-8}\Leftrightarrow x^3-3x=6\)
\(y^3=34+3y\sqrt[3]{17^2-12^2.2}\Leftrightarrow y^3-3y=34\)
=>B = 6 + 34 + 2017 =2057
Ta có:
x3=6+3x.3√9−8⇔x3−3x=6
y3=34+3y3√172−122.2⇔y3−3y=34
Nên ta suy ra được => B = 6 + 34 + 2017 =2057
Chúc bạn học tốt :)))
a/ \(A=\sqrt{6-2\sqrt{5}}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1^2}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}\)\(=\sqrt{5}-1-\sqrt{5}\)\(=-1.\)
Bạn kiểm tra lại câu b với c đi, hình như sai đề rồi.
đây là toán lớp 9 mà
trả lời chỉ để lấy tích thời mọi người tích giùm hihi