Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc
Đặt B = \(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)
\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\) (1)
Từ \(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)
=>\(a^2x^2+b^2y^2+c^2z^2+2\left(bcyz+acxz+abxy\right)=0\)
=>\(a^2x^2+b^2y^2+c^2z^2=-2\left(bcyz+acxz+abxy\right)\) (2)
Thay (2) vào (1) ta được:
\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)
\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)
Vậy \(A=\frac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)
1) pp: biến đổi tương đương
ta có: VT= \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)
= \(\left(ax\right)^2+\left(ay\right)^2+\left(az\right)^2+\left(bx\right)^2+\left(by\right)^2+\left(bz\right)^2+\left(cx\right)^2+\left(cy\right)^2+\left(cz\right)^2\) (*)
VP=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\)
=\(\: \left(ax\right)^2+\left(by\right)^2+\left(cz\right)^2+2\left(axby+bycz+czax\right)+\left(bz\right)^2+\left(cy\right)^2+\left(cx\right)^2+\left(az\right)^2\)
\(+\left(ay\right)^2+\left(bx\right)^2-2\left(bzcy+cxaz+aybx\right)\) (**)
Từ (*),(**)=> VT-VP=0=> VT=VP=> \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\) (đpcm)
2) áp dụng BĐT Schwartz ta có:
\(\left(a+b+c\right)^2\le\left(1+1+1\right)\left(a^2+b^2+c^2\right)\)
=>\(2010^2\le3\left(a^2+b^2+c^2\right)\) (vì a+b+c=2010)
=>\(a^2+b^2+c^2\ge\frac{2010^2}{3}=1346700\)
Dấu '=' xảy ra khi: a=b=c
Vậy GTNN của a^2 +b^2 +c^2 là 1346700 khi a=b=c
\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)
Ta có : \(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2=\left(y+z\right)^2\\y^2=\left(z+x\right)^2\\z=\left(x+y\right)^2\end{cases}}\)
\(\Rightarrow ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=ay^2+az^2+bz^2+bx^2+cx^2+cy^2+2\left(ayz+bzx+cxy\right)\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\left(1\right)\)
Từ \(a+b+c=0\) \(\Rightarrow\hept{\begin{cases}b+c=-a\\c+a=-b\\a+b=-c\end{cases}}\)
Thay vào \(\left(1\right)\), ta được :
\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2+2\left(ayz+bzx+cxy\right)\)
Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)\(\Rightarrow ayz+bzx+cxy=0\)
\(\Rightarrow ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)
\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)
\(2x-2y=by+cz-cz-ax=by-ax\)
\(\Rightarrow2x-2y=by-ax\)
\(\Rightarrow2x+ax=2y+by\)
\(\Rightarrow x\left(a+2\right)=y\left(b+2\right)\)
\(\Rightarrow a+2=\dfrac{y\left(b+2\right)}{x}\)
\(2z-2y=ax+by-cz-ax=by-cz\)
\(\Rightarrow2z+cz=2y+by\)
\(\Rightarrow z\left(c+2\right)=y\left(b+2\right)\)
\(\Rightarrow c+2=\dfrac{y\left(b+2\right)}{z}\)
\(A=\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}=\dfrac{2}{\dfrac{y\left(b+2\right)}{x}}+\dfrac{2}{b+2}+\dfrac{2}{\dfrac{y\left(b+2\right)}{z}}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2}{b+2}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2y}{y\left(b+2\right)}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x+2y+2z}{y\left(b+2\right)}=\dfrac{by+cz+cz+ax+ax+by}{by+2y}=\dfrac{2\left(ax+by+cz\right)}{by+cz+ax}=2\)
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
Theo BĐT Bunhia ta có (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z
suy ra a/x=b/y=c/z
bạn có thể cm HỘ MÌNH bdt bUNHIA ĐC KO AK