K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

Đặt B = \(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)

\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\) (1)

Từ \(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)

=>\(a^2x^2+b^2y^2+c^2z^2+2\left(bcyz+acxz+abxy\right)=0\)

=>\(a^2x^2+b^2y^2+c^2z^2=-2\left(bcyz+acxz+abxy\right)\) (2)

Thay (2) vào (1) ta được:

\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)

\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)

\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)

Vậy \(A=\frac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)

16 tháng 12 2020

\(A=\dfrac{bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2bcyz-2cazx-2abxy}{ax^2+by^2+cz^2}=\dfrac{\left(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\right)-\left(ax+by+cz\right)^2}{ax^2+by^2+cz^2}=\dfrac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)

19 tháng 10 2016

Phân tích mẫu :

\(M=bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)

Khai triển các bình phương và gom các nhân tử chung :

\(M=\left(ab+ac\right)x^2+\left(ab+bc\right)y^2+\left(bc+ac\right)z^2-2abxy-2bcxy-2acxy\)

\(=\left[\left(ab+ac\right)x^2+a^2x^2+\left(ab+bc\right)y^2+b^2y^2+\left(bc+ac\right)z^2+c^2z^2\right]-\)\(\left(a^2x^2+b^2y^2+c^2z^2+2ab+2aczx+2bcyz\right)\)

\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)-\left(ax+by+cz\right)^2\)

\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\) ( vì \(ax+by+cz=0\) )

Kết quả :  \(M=\frac{1}{a+b+c},a+b+c\ne0\)

18 tháng 11 2018

lấy mẫu trừ đi (ax+by+cz)^2

19 tháng 5 2016

theo đề bài: \(ax+by+cz=0\)=> \(\left(ax+by+cz\right)^2=0\)

               => \(a^2x^2+b^2y^2+c^2z^2+2\left(axby+bycz+axcz\right)=0\left(1\right)\)

ta lại có tử số =\(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)

  =\(bcy^2+bcz^2+caz^2+acx^2+abx^2+aby^2-2\left(abxy+acxz+bcyz\right)\)(2)

từ (1)(2)=>

Tử số=\(ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)

        =\(\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)

vậy A=a+b+c

19 tháng 5 2016
A=a+b+c
23 tháng 12 2016

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{c}{z}=k\ne0\) thì \(x=ak;y=bk;z=ck.\)

Do đó : \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)

\(=\frac{k^2\left(a^2+b^2+c^2\right)^2}{k^2\left(a^2+b^2+c^2\right)^2}=1.\)

 

AH
Akai Haruma
Giáo viên
29 tháng 7 2019

Lời giải:

Từ \(ax+by+cz=0\Rightarrow (ax+by+cz)^2=0\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2(axby+axcz+bycz)\)

\(=-2(bcyz+cazx+abxy)\)

Khi đó:

\(bc(y-z)^2+ca(z-x)^2+ab(x-y)^2=bc(y^2-2yz+z^2)+ca(z^2-2zx+x^2)+ab(x^2-2xy+y^2)\)

\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)-(2bcyz+2cazx+2abxy)\)

\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)+(a^2x^2+b^2y^2+c^2z^2)\)

\(=ax^2(a+b+c)+by^2(a+b+c)+cz^2(a+b+c)=(a+b+c)(ax^2+by^2+cz^2)\)

Do đó:

\(\frac{ax^2+by^2+cz^2}{bc(y-z)^2+ca(z-x)^2+ab(x-y)^2}=\frac{ax^2+by^2+cz^2}{(ax^2+by^2+c^2)(a+b+c)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2019}}=2019\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
29 tháng 7 2019

Rồng Con: bạn ghép nhóm thì nó ra thế á.

\(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)

\(=(bcy^2+aby^2+b^2y^2)+(bcz^2+caz^2+c^2z^2)+(cax^2+abx^2+a^2x^2)\)

\(=by^2(c+a+b)+cz^2(b+a+c)+ax^2(c+b+a)\)

\(=(a+b+c)(ax^2+by^2+cz^2)\)

Ý tưởng là bạn tìm những cái có cùng $ax^2,by^2,cz^2$ để nhóm với nhau, cuối cùng ra 1 biểu thức có chứa $ax^2+by^2+cz^2$ liên quan đến tử để triệt tiêu ^^

14 tháng 12 2016

Đặt \(B=bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)

\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\)( 1 )

Mà  \(a.x+by+cz=0\)

\(\Rightarrow\left(a.x+by+cz\right)^2=0^2\)

\(\Rightarrow a^2x^2+b^2y^2+c^2z^2+2\left(axby+axcz+bycz\right)=0\)( 2 )

\(\left(1\right)\left(2\right)\Rightarrow B=B+0\)

\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)+a^2x^2+b^2y^2+c^2z^2+2\left(axby+axcz+bycz\right)\)

\(=a.x^2\left(b+c\right)+b.y^2\left(a+c\right)+c.z^2\left(a+b\right)+a^2x^2+b^2y^2+z^2c^2\)

\(=a.x^2\left(a+b+c\right)+b.y^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)

\(=\left(a.x^2+by^2+cz^2\right)\left(a+b+c\right)\)

\(\Rightarrow A=\frac{B}{ax^2+by^2+cz^2}=a+b+c\)

Vậy ...

14 tháng 12 2016

x^20+(x+1)^11=2016^y=?