Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có S + 4 = \(\left(\frac{a}{b+c+d}+1\right)+\left(\frac{b}{c+d+a}+1\right)+\left(\frac{c}{a+b+d}+1\right)+\left(\frac{d}{a+b+c}+1\right)\)
\(=\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{a+c+d}+\frac{a+b+c+d}{a+b+d}+\frac{a+b+c+d}{b+c+d}\)
\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)\)
\(=4000.\frac{1}{40}=100\)(a + b + c + d = 4000 ; \(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}=\frac{1}{40}\))
=> S = 100 - 4 = 96
a/ Nhân cả 2 vế với a+b+c+d
\(\Rightarrow\frac{a+b+c+d}{a+b+c}+\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}+\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{40}.\)
\(\Rightarrow1+\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1+\frac{c}{d+a+b}=\frac{2000}{40}=50\)
\(\Rightarrow S=46\)
Ta có S = \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)
=> S + 4 = \(\left(\frac{a}{b+c+d}+1\right)+\left(\frac{b}{c+d+a}+1\right)+\left(\frac{c}{d+a+b}+1\right)+\left(\frac{d}{a+b+c}+1\right)\)
= \(\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}+\frac{a+b+c+d}{d+a+b}+\frac{a+b+c+d}{a+b+c}\)
\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}+\frac{1}{a+b+c}\right)\)
\(=4000.\frac{1}{40}=100\)
=> S = 100 - 4 = 96
Mình thử nha :33
Ta có : \(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
\(\Leftrightarrow\left(a+b+c+d\right)\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\cdot2000=50\) ( do \(a+b+c+d=2000\) )
\(\Rightarrow1+\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1+\frac{a}{b+c+d}=50\)
\(\Rightarrow S=50-4=46\)
Vậy : \(S=46\) với a,b,c,d thỏa mãn đề.
Em có cách khác!
\(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
\(\Rightarrow\frac{a+b+c+d}{a+b+c}+\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}\)
\(+\frac{a+b+c+d}{d+a+b}=50\)
\(\Rightarrow\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1\)
\(+\frac{c}{d+a+b}+1=50\)
\(\Rightarrow\frac{d}{a+b+c}+\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}=46\)
Đề: \(a+b+c+d=2000\)
\(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
Tính:
\(S=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)
Giải:
Có: \(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
=> \(\frac{1}{2000-d}+\frac{1}{2000-a}+\frac{1}{2000-b}+\frac{1}{2000-c}=\frac{1}{40}\)
<=> \(\frac{2000}{2000-d}+\frac{2000}{2000-a}+\frac{2000}{2000-b}+\frac{2000}{2000-c}=\frac{2000}{40}\)
<=> \(1+\frac{d}{2000-d}+1+\frac{a}{2000-a}+1+\frac{b}{2000-b}+1+\frac{c}{2000-c}=50\)
<=> \(\frac{d}{a+b+c}+\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}=46\)
=> \(S=46\)