Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số lít dầu đã lấy đi là :
211 ‐ ﴾ 85 + 46 ﴿ = 80 ﴾lít﴿
Mổi thùng bị lấy số lít dầu là :
80 : 2 = 40 ﴾ lít ﴿
Thùng thứ nhất lúc đầu có số lít dầu là :
85 + 40 = 125 ﴾ lít ﴿
Thùng thứ 2 lúc đầu có số lít dầu là :
46+40=86 ﴾ lít ﴿
Ta có: xy=a ; yz=b ; zx=c
=> \(x^2.y^2.z^2=abc\)
\(x^2.y^2=a^2\)
\(y^2.z^2=b^2\)
\(z^2.x^2=c^2\)
Vậy: \(x^2.b^2=abc\)
\(a^2.z^2=abc\)
\(y^2.c^2=abc\)
\(x^2=\frac{ac}{b};y^2=\frac{ab}{c};z^2=\frac{bc}{a}\)
Vậy: \(x^2+y^2+z^2=\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}=\frac{a^2.b^2+b^2.c^2}{abc}\)
`Answer:`
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+ax}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)
Theo đề ra, có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}\)
\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)
\(\Rightarrow\hept{\begin{cases}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}ayz=cxy\\bxz=cxy\\bxz=ayz\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}az=cx\\bz=cy\\bx=ay\end{cases}}\left(2\right)\)
Thế (2) và (1): \(\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)
\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)
\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\)
Thế (3) vào (2): \(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{cases}}\)
Ta có: \(a+b+c=1 \)
\(\Leftrightarrow(a+b+c)^2=1 \)
\(\Leftrightarrow ab+bc+ca=0 (1) \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{(x+y+z)}{\left(a+b+c\right)}=x+y+z\)
\(\Leftrightarrow x=a\left(x+y+z\right)\)
\(\Leftrightarrow y=b.\left(x+y+z\right)\)
\(\Leftrightarrow z=c.\left(x+y+z\right)\)
\(\Rightarrow xy+yz+zx=ab.\left(x+y+z\right)^2+bc.\left(x+y+z\right)^2+ca.\left(x+y+z\right)^2\)
\(\Leftrightarrow xy+yz+zx=\left(ab+bc+ca\right).\left(x+y+z\right)^2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(xy+yz+zx=0\)