K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

Bất lực, tìm được mỗi max P T.T

13 tháng 9 2020

Đề bài là GTNN :))

20 tháng 11 2018

\(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}=\frac{1}{\frac{a^4\left(1+b\right)\left(1+c\right)}{abc}}=\frac{\frac{1}{a^3}}{\left(\frac{1}{b}+1\right)\left(\frac{1}{c}+1\right)}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\), tương tự suy ra:

\(A=\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)

Theo BĐT AM-GM ta có: \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)

Tương tự suy ra \(A+\frac{3}{4}+\frac{x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)

\(\Rightarrow A\ge\frac{x+y+z}{2}-\frac{3}{4}\ge\frac{3\sqrt[3]{xyz}}{2}-\frac{3}{4}=\frac{3}{4}\)

Dấu = xảy ra khi x=y=z=1 hay a=b=c=1

20 tháng 11 2018

VỚi các số thực: a,b,c >0 thỏa a+b+c=1. Chứng minh rằng: \(\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\le2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

Help me

31 tháng 3 2018

\(b^4+c^4\ge bc\left(b^2+c^2\right)\)vì \(\left(b-c\right)^2\left(b^2+bc+c^2\right)\ge0\)

\(\Rightarrow T\le\frac{a}{\frac{b^2+c^2}{a}+a}+\frac{b}{\frac{a^2+c^2}{b}+b}+\frac{c}{\frac{a^2+b^2}{c}+c}=1\)

1 tháng 4 2018

rõ đi bạn

11 tháng 7 2017

tương tự Xem câu hỏi

11 tháng 4 2021

alibaba nguyễn giúp em với WTFシSnow WTFシSnow 

13 tháng 8 2016

\(b^4+c^4+a=b^4+c^4+a.abc\)

+Chứng mih \(b^4+c^4\ge bc\left(b^2+c^2\right)\text{ (1)}\)

\(\left(1\right)\Leftrightarrow\frac{1}{2}.\left(b-c\right)^2\left[b^2+c^2+\left(b+c\right)^2\right]\ge0\)(đúng)

\(\Rightarrow b^4+c^4+a\ge bc\left(b^2+c^2\right)+a^2bc=bc\left(a^2+b^2+c^2\right)=\frac{1}{a}\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a^2}{a^2+b^2+c^2}\)

Tương tự và cộng lại ta sẽ có kết quả.

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

NV
1 tháng 3 2020

\(\frac{a^4}{b^2c}+b+b+c\ge4\sqrt[4]{\frac{a^4b^2c}{b^2c}}=4a\)

Tương tự: \(\frac{b^4}{c^2a}+2c+a\ge4b\) ; \(\frac{c^4}{a^2b}+2a+b\ge4c\)

Cộng vế với vế:

\(VT+3\left(a+b+c\right)\ge4\left(a+b+c\right)\Rightarrow VT\ge a+b+c=5\)

Dấu "=" xảy ra khi \(a=b=c=\frac{5}{3}\)

5 tháng 9 2018

\(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{\left(1+1+2\right)^2}{a+b+c}=\frac{16}{4}=4\)

5 tháng 9 2018

P=1/a+1/b+4/c > {1+1+2}^2/a+b+c

                       =16/4=16:4=4

12 tháng 12 2019

Ta có :

       2.C = \(2.x+2.y+\frac{4}{x}=\left(x+2.y\right)+\left(x+\frac{4}{x}\right)\ge8+2\sqrt{x.\frac{4}{x}}=12\)

=>  \(C\ge12\)

Dấu " = "   <=>  \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

2 tháng 4 2020

Đang lướt câu hỏi của bạn thì thấy câu này hay tiện tay làm luôn :D

\(b^4+c^4=\frac{3b^4+c^4}{4}+\frac{3c^4+b^4}{4}\ge\frac{4\sqrt[4]{\left(b^4\right)^3\cdot c^4}}{4}+\frac{4\sqrt[4]{\left(c^4\right)^3b^4}}{4}=b^3c+c^3b\)

\(=bc\left(b^2+c^2\right)=\frac{1}{a}\left(b^2+c^2\right)=\frac{b^2+c^2}{a}\)

\(\Rightarrow a+b^4+c^4\ge a+\frac{b^2+c^2}{a}=\frac{a^2+b^2+c^2}{a}\)

\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a^2}{a^2+b^2+c^2}\)

Thiết lập các BĐT tương tự,khi đó:

\(A\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra tại a=b=c=1