K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

Áp dụng bđt Schwarz ta có: \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\dfrac{a+b+c}{2}=1\).

NV
9 tháng 3 2021

\(\Leftrightarrow\dfrac{2a^2}{b^2}+\dfrac{2b^2}{c^2}+\dfrac{2c^2}{a^2}=\dfrac{2a}{c}+\dfrac{2c}{b}+\dfrac{2b}{a}\)

\(\Leftrightarrow\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}\right)+\left(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}-\dfrac{2c}{b}\right)+\left(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}-\dfrac{2b}{a}\right)=0\)

\(\Leftrightarrow\left(\dfrac{a}{b}-\dfrac{b}{c}\right)^2+\left(\dfrac{a}{b}-\dfrac{c}{a}\right)^2+\left(\dfrac{b}{c}-\dfrac{c}{a}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}-\dfrac{b}{c}=0\\\dfrac{a}{b}-\dfrac{c}{a}=0\\\dfrac{b}{c}-\dfrac{c}{a}=0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)

21 tháng 3 2017

Bài 1:a,b,c ba cạnh tam giác => a,b,c dương

\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)

\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)

\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)

p/s: đề sao làm vậy:

mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn

22 tháng 3 2017

hướng dẫn bài 2,3 giúp mình với

AH
Akai Haruma
Giáo viên
10 tháng 4 2018

Lời giải:

Ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow \left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)(a+b+c)=a+b+c\)

\(\Leftrightarrow \frac{a^2}{b+c}+\frac{a(b+c)}{b+c}+\frac{b(c+a)}{c+a}+\frac{b^2}{c+a}+\frac{c(a+b)}{a+b}+\frac{c^2}{a+b}=a+b+c\)

\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

Ta có đpcm.

9 tháng 6 2018

abcbaccba=0=>ab−c−ba−c−cb−a=0

=>abc=bac+cba=b2ab+acc2(ca)(ab)=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)

Nhân cả 2 vế với 1bc1b−c ta được

a(bc)2=b2ab+acc2(ab)(bc)(ca)(1)a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)

Tương tự ta có:

b(ca)2=c2bc+bca2(ab)(bc)(ca)(2)b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)

c(ab)2=a2ca+cbc2(ab)(bc)(ca)(3)c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)

Cộng theo vế (1);(2);(3) ta có ĐPCM

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Lời giải:
Ta có:

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow \frac{a}{b-c}=\frac{-b}{c-a}+\frac{-c}{a-b}\)

\(\Leftrightarrow \frac{a}{b-c}=\frac{-b(a-b)-c(c-a)}{(a-b)(c-a)}=\frac{b^2+ca-c^2-ab}{(a-b)(c-a)}\)

\(\Rightarrow \frac{a}{(b-c)^2}=\frac{b^2+ca-c^2-ab}{(a-b)(b-c)(c-a)}\)

Hoàn toàn tương tự:

\(\frac{b}{(c-a)^2}=\frac{c^2+ab-a^2-bc}{(a-b)(b-c)(c-a)}\)

\(\frac{c}{(a-b)^2}=\frac{a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}\)

Cộng theo vế các đẳng thức vừa thu được ta có:

\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=\frac{b^2+ac-c^2-ab+c^2+ab-a^2-bc+a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}=0\)

Ta có đpcm.

1 tháng 1 2019

0.