Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c
AE = AH (gt)
AM = MH (gt)
\(\Rightarrow MH=\dfrac{1}{3}HE\)
Gọi N là trung điểm BH
Xét tam giác ABH có \(\left\{{}\begin{matrix}BN=NH\Rightarrow MN:đường.trung.bình.của.\Delta ABH\\AM=MH\Rightarrow MN//AB\end{matrix}\right.\)
=> \(MN\perp AC\)
Xét tam giác ANC có 2 đường cao là MN và AH
=> M là trực tâm
=> MC \(\perp\) AN
Có AN là đường trung bình tam giác BEH => AN//BE
=> AM // BE
a) Xét △HBA và △ABC có
\(\widehat{AHB}=\widehat{BAC}=90^o\)
\(\widehat{B}\) là góc chung
⇒ ∆HBA ∾ ∆ABC (g-g)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔABC vuông tại A
mà AH là đường cao
nên AH^2=HB*HC
a: E đối xứng M qua AB
nên AB là trung trực của ME
=>AB vuông góc với ME tại trung điểm của ME
=>AB là phân giác của góc EAM(1)
E đối xứng N qua AC
nên AC là trung trực của NE
=>AC vuông góc với NE tại trung điểm của NE
=>AC là phân giác của góc EAN(2)
Xét tứ giác AIEK có
góc AIE=góc AKE=góc KAI=90 độ
nên AIEK làhình chữ nhật
b: Từ (1), (2) suy ra góc NAM=2*90=180 độ
=>N,A,M thẳng hàng
mà AM=AN
nên A là trung điểm của MN
a: Xét tứ giác AHCD có
M là trung điểm chung của AC vàHD
góc AHC=90 độ
Do đó: AHCD là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
a: Xét tứ giác AHCD có
M là trung điểm chung của AC vàHD
góc AHC=90 độ
Do đó: AHCD là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
cho mình hỏi đề bạn viết có đúng không vậy
Cho △ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh : △HBA=△ABC ( chứng minh kiểu gì)
b)Chứng minh: AH2=HB.HC
c)Gọi E là điểm đối xứng với H qua điểm A, M là trung điểm của AH. Chứng minh CM⊥BE tại K
đề sai rồi ạ