Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tự cm
b) Vì AB//DM mà ABvuoong góc với AC nên DM vuông góc với AC
Vì AH vuông góc với BC mà M thuộc BC nên CH vuông góc với AD
Xét tam giác ADC có:
DM vuông góc với AC
CM vuông góc với AD
mà DM cắt CM tại M
=> M là trực tâm của tam giác ADC
=> AM vuông góc với CD
=> đpcm
c) Xét tam giác NCm có
I là trung điểm của CM
=> IM=IN=IC
Xét tam giác IN< có
IM=IN
=> IMN cân tại I
=> IMN=INM góc
mà IMN=DMH
=> INM=DMH(3)
Xét tam giác AND có
H là trung điểm của AD
=> NH=HD=HA
tương tự tam giác NHD cân tại H
=>D=N( góc)(2)
mà HDN+DMH=90 độ(1)
Từ 1.2.3=> INM+MNH=90 độ
hay IN vuông góc với NH
đpcm
a) Ta có : AB//DM (gt) (1)
Xét tam giác ABH và tam giácDMH có
BHA^=DHA^(đối đỉnh)
AH=HD(A đx D qua H)
BAH^=HDM^(so le trong)
=> tam giác ABH=tam giácDMH (g-c-g)
=>AB=DM ( 2 cạnh tương ứng) (2)
Tử (1)(2) => ABDM là hbh
Vì M thuộc BC
mà AH vuông BC => AH vuông BM
Xét hbh ABDM có
AH vuông BM
=> hbh ABDM là hình thoi
ĐỀ CHƯA RÕ TỪ SẼ CHO BÀI TỐT HƠN
=> A1ˆ=D1ˆA1^=D1^(so le trong )
* Xét △AHB và △DHM có
H1ˆ=H2ˆ(=900)H1^=H2^(=900)
AH =HD (D đối xứng với A qua H )
A1ˆ=D1ˆ(cmt)A1^=D1^(cmt)
=> △AHB = △DHM (g.c.g)
=> BH = MH (2 cạnh t/ứng )
* xét tứ giác ABDM có
AH=HD (d đối xứng với A qua H)
BH=MH (cmt)
=> ABDH là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
mà AD ⊥BM
=> ABDM là hình thoi (hbh có 2 đường chéo vuông góc với nhau )(đpcm)
b) vì
+DN//AB (gt)
+AB ⊥AC (△ABC vuông tại A)
=> AC ⊥DN (qh từ vuông góc đến song song )
=> DN là đường cao △ ADC(1)
mà AD ⊥CH ( AH ⊥AC)
=> CH là đường cao của △ADC
từ (1) và (2) => M là trực tâm của △ADC
=> AM là đường cao
=> AM ⊥DC (đpcm)
1: Xét tứ giác ABDM có
H là trung điểm của BM
H là trung điểm của AD
Do đo: ABDM là hình bình hành
mà AD\(\perp\)BM
nên ABDM là hình thoi
2: Xét ΔADC có
DM là đường cao
CH là đừog cao
DM cắt CH tại M
Do đó: M là trực tam
=>AM\(\perp\)CD